

БЕСКОНТАКТНЫЕ СЧИТЫВАТЕЛИ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Версия 2.0

Содержание

Термины и определения	3
Введение	5
1 Основные сведения и технические характеристики	8
1.1 Назначение и область применения	8
1.2 Внешний вид и комплектность	11
1.3 Технические характеристики	12
1.3.1 Основные эксплуатационные характеристики	12
1.3.2 Габаритные размеры	13
1.3.3 Выходной интерфейс CANCrocodile	14
1.3.4 Выходной интерфейс 1708Crocodile	15
1.3.5 Характеристики выходного сигнала NozzleCrocodile и Nozzle BMCrocodile.	16
1.3.6 Совместимость Crocodile с терминалами	17
1.4 Устройство и принцип действия Crocodile	19
2 Подключение Crocodile	21
2.1 Внешний осмотр перед подключением	21
2.2 Рекомендации по поиску проводов шины CAN	22
2.3 Рекомендации по поиску проводов шины J1708	25
2.4 Рекомендации по поиску управляющего провода форсунки	26
2.5 Эксплуатационные ограничения	27
2.6 Электрическое подключение	28
2.7 Бесконтактное подключение к автомобильным проводам	30
3 Проверка функционирования	31
4 Калибровка NozzleCrocodile и Nozzle BMCrocodile	32
5 Интеграция бортовых информационных шин CAN и J1708	
в системы транспортной телематики	
6 Использование индикатора расхода топлива DFM i	35
7 Отключение Crocodile	37
8 Упаковка	38
9 Хранение	39
10 Транспортирование	40
11 Утилизация	41
Контактная информация	42
Приложение А Примеры схем безопасного подключения терминала	
к автомобильным информационным шинам САN (11708)	43

Термины и определения

<u>GPS</u> — Американская спутниковая система определения местонахождения объектов. Сигналы спутников GPS позволяют вычислять навигационному приемнику потребителя текущие координаты на местности, скорость и направление движения.

<u>ГЛОНАСС</u> — Российская навигационная система. Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своем орбитальном движении не имеют синхронности с вращением Земли.

<u>CAN</u> (Controller Area Network) — последовательный цифровой интерфейс связи шинного типа, соответствующий Международному стандарту ISO 11898-1:2003.

Для передачи данных в шине CAN могут использоваться различные протоколы высокого уровня: J1939, CANopen, DeviceNet, CAN Kingdom и др.

Шина CAN служит для объединения в единую сеть различных исполнительных электронных устройств и датчиков как в системах промышленной автоматизации, так и в автомобильной промышленности.

В настоящее время большой интерес представляет использование автомобильной шины CAN для получения информации о транспортном средстве в системах GPS/ГЛОНАСС мониторинга транспорта.

<u>J1708</u> — последовательный цифровой интерфейс связи шинного типа. Шина J1708 используется для передачи данных и обменом информацией между контроллером двигателя и другими электронными блоками на некоторых современных ТС. Уровень представления данных соответствует международному стандарту SAE J1587.

FMS — пакеты данных бортовых информационных шин транспортных средств (далее — TC), соответствующие документу FMS-Standard Interface description (далее — FMS-Standard). FMS-Standard является открытым стандартом интерфейса FMS, разработанного ведущими мировыми производителями грузовых автомобилей.

Подробное описание сообщений FMS содержится в документе FMS-Standard Interface description. Актуальную версию документа можно скачать на сайте разработчика http://www.fms-standard.com

 $\underline{\sf S6}$ — бортовая телематическая шина транспортных средств (далее — TC), разработанная $\underline{\sf Технотон}$ для обеспечения интеграции систем GPS/ГЛОНАСС мониторинга транспорта с элементами электрооборудования автомобиля. Представляет собой систему кабелей и протоколов.

Физически реализована на основе интерфейсов CAN 2.0B (ISO 11898-1:2003) и K-Line (ISO 9141). Протокол обмена информацией по шине S6 построен на основе стандарта SAE J1939 и удовлетворяет его требованиям.

Подробное описание протокола передачи данных телематической шины S6 представлено на сайте http://s6.jv-technoton.com.

<u>Telematics</u> — специальный набор сообщений, разработанный Технотон на основе стандарта SAE J1939. Сообщения Telematics включают основную информацию о параметрах работы TC.

<u>Протокол</u> — Набор соглашений логического уровня, позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть устройствами. Эти соглашения задают единообразный способ передачи данных и обработки ошибок.

<u>Терминал</u> — Элемент системы мониторинга, выполняющий функции: считывания сигналов штатных и дополнительных датчиков, установленных на TC, определения местоположения и передачи данных на сервер Системы мониторинга транспорта.

<u>Транспортная телематика</u> — Спутниковый мониторинг транспорта, построенный на основе систем GPS/ГЛОНАСС навигации, оборудования и технологий сотовой и/или радиосвязи, вычислительной техники и цифровых карт. Используется для решения задач транспортной логистики в системах управления перевозками и автоматизированных системах управления автопарком.

<u>Транспортное средство</u> (ТС) — Контролируемый объект Системы мониторинга транспорта. Обычно это автомобиль, автобус или трактор, иногда тепловоз, судно, технологический транспорт. С точки зрения Системы мониторинга, к ТС относятся также стационарные установки: дизельные генераторы, отопительные котлы, горелки и т.п.

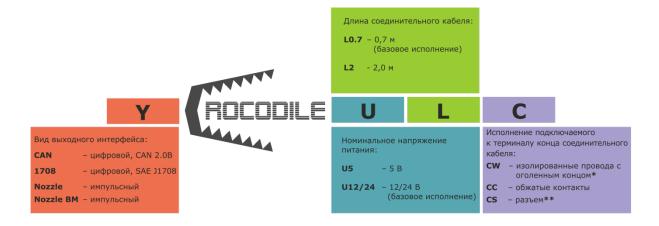
Введение

Рекомендации и правила, изложенные в Руководстве по эксплуатации относятся к **бесконтактным считывателям Crocodile** (далее — <u>Crocodile</u>), производства СП <u>Технотон</u>, город Минск, Республика Беларусь.

Настоящий документ содержит сведения о конструкции, принципе действия, характеристиках Crocodile, определяет порядок их установки и подключения, содержит рекомендации по эксплуатации.

ПОСОПІЕ ПОЗВОЛЯЮТ СЧИТЫВАТЬ ДАННЫЕ О РАБОТЕ АВТОМОБИЛЯ БЕЗ ВМЕШАТЕЛЬСТВА В ЦЕЛОСТНОСТЬ ЭЛЕКТРОННЫХ СИСТЕМ ТРАНСПОРТНОГО СРЕДСТВА.

Отличительные особенности Crocodile:


- соответствуют отечественным и европейским автомобильным стандартам;
- **бесконтактно считывают сигналы через изоляцию проводов**, не нарушая ее целостность;
- не оказывают воздействия на электронное и электрическое оборудование автомобиля;
- используются для контроля расхода бензина и сжиженного газа на малом коммерческом транспорте*
- в комплексе с интерфейсами данных автомобиля **MASTERLAN** используются для безопасного объединения одной или нескольких бортовых информационных шин в телематическую шину ;
- имеют световую индикацию режимов работы;
- питаются от бортовой сети автомобиля не требуется использовать дополнительные устройста (блоки питания);
- защищены от переполюсовки;
- просты в установке и эксплуатации;
- не требуют предварительной настройки.

^{*} NozzleCrocodile, Nozzle BMCrocodile.

Crocodile представлен следующими моделями:

- — для безопасного получения данных о работе автомобиля из бортовой шины CAN;
- — для безопасного получения данных о работе автомобиля из бортовой шины J1708;
- — для контроля расхода бензина и газа по импульсам форсунки на автомобилях, оснащенных двигателями с электронным управлением форсунками в системе впрыска топлива.
- — для контроля расхода бензина и газа по импульсам форсунки на автомобилях, оснащенных двигателями ТОУОТА с электронным управлением форсунками в системе впрыска топлива.

Условное обозначение Crocodile для заказа формируется в соответствии с рисунком 1:

- * Базовое исполнение для NozzleCrocodile, Nozzle BMCrocodile и 1708Crocodile.
- ** Базовое исполнение для CANCrocodile.

Рисунок 1 — Условное обозначение Crocodile для заказа

ВНИМАНИЕ: Условные обозначения, соответствующие базовому исполнению Crocodile, в записи при заказе можно не указывать.

Примеры записи Crocodile при заказе:

«Бесконтактный считыватель CANCrocodile U5 L2 CC»,

(выходной интерфейс — CAN 2.0B; номинальное напряжение питания — 5 B; длина соединительного кабеля — 2 м; конец соединительного кабеля — обжатые контакты);

«Бесконтактный считыватель NozzleCrocodile»,

(выходной интерфейс — импульсный; номинальное напряжение питания — 12/24 В; длина соединительного кабеля — 0.7 м; конец соединительного кабеля — изолированные провода с оголенным концом).

ВНИМАНИЕ: При эксплуатации Crocodile необходимо строго придерживаться рекомендаций производителя, указанных в настоящем Руководстве по эксплуатации.

Для обеспечения правильного функционирования Crocodile их установка и подключение должны осуществляться сертифицированными специалистами, прошедшими фирменное обучение.

Производитель гарантирует соответствие Crocodile требованиям технических нормативных правовых актов при соблюдении условий хранения, транспортирования и эксплуатации, а также указаний по применению, установленных в настоящем Руководстве по эксплуатации.

ВНИМАНИЕ: Производитель оставляет за собой право изменять без согласования с потребителем технические характеристики Crocodile, не ведущие к ухудшению их потребительских качеств.

1 Основные сведения и технические характеристики

1.1 Назначение и область применения

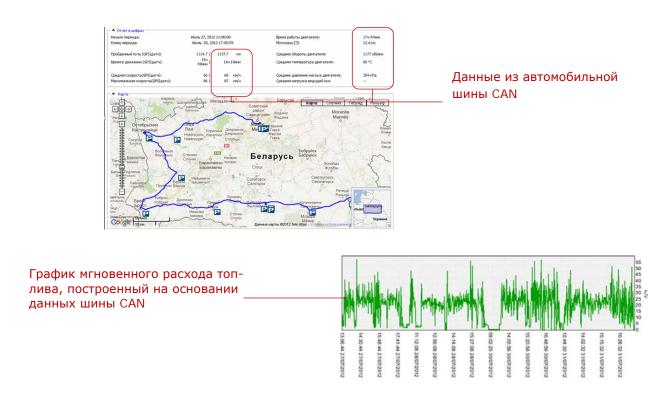
Бесконтактные считыватели <u>Crocodile</u>, в зависимости от модели, предназначены для:

- бесконтактного считывания данных из шины <u>CAN</u> и формирования выходного сигнала, по составу информации совпадающего с данными подключенной шины (<u>CANCrocodile</u>);
- бесконтактного считывания данных из шины <u>J1708</u> и формирования выходного сигнала, по составу информации совпадающего с данными подключенной шины (<u>1708Crocodile</u>);
- бесконтактного считывания управляющих импульсов бензиновой/газовой форсунки двигателя ТС и преобразования их в нормированные выходные импульсы, количество которых пропорционально объему расхода бензина/сжиженного газа (NozzleCrocodile).
- бесконтактного считывания импульсов бензиновой/газовой форсунки двигателя ТОУОТА и преобразования их в нормированные выходные импульсы, количество которых пропорционально объему расхода бензина/сжиженного газа (Nozzle BMCrocodile).

Область применения Crocodile — системы <u>GPS/ГЛОНАСС</u> мониторинга транспорта, в которых Crocodile используются для получения информации о расходе топлива, режимах работы двигателя, состоянии датчиков, наличии неисправностей <u>TC</u>.

CANCrocodile и 1708Crocodile устанавливаются на всех видах TC, оснащенных соответственно шинами CAN и J1708 (см. рисунок 2 а). NozzleCrocodile и Nozzle BMCrocodile устанавливаются на TC, оснащенных двигателями с электронным управлением форсунками в системе впрыска бензина/сжиженного газа (см. рисунок 2 б).

CANCrocodile и 1708Crocodile совместимы с любыми типами терминалов, имеющих вход для подключения соответственно шин CAN и J1708. NozzleCrocodile и Nozzle BMCrocodile совместимы с любыми типами терминалов, которые имеют вход для подключения импульсного расходомера топлива (см. $\underline{1.3.6}$).


а) при помощи CANCrocodile/1708Crocodile

б) при помощи NozzleCrocodile/Nozzle BMCrocodile

Рисунок 2 — Безопасное получение данных в системе GPS/ГЛОНАСС мониторинга транспорта

Выходной сигнал <u>Crocodile</u> поступает на терминал системы мониторинга транспорта, который осуществляет сбор, регистрацию, хранение и передачу на сервер полученных сигналов. Установленное на сервере программное обеспечение производит обработку, анализ полученных данных и формирует отчеты, содержащие информацию о расходе топлива, режимах работы и параметрах двигателя, наличии неисправностей ТС (см. рисунок 3).

a) с помощью CANCrocodile

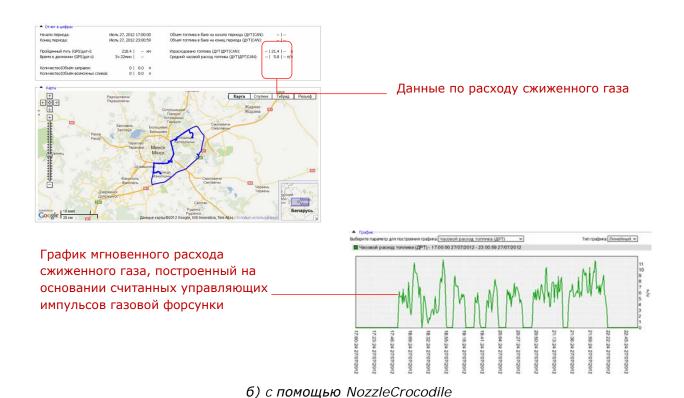
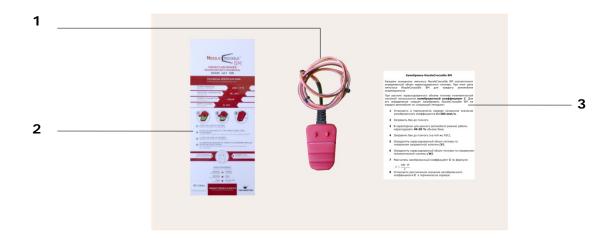


Рисунок 3 — Примеры отчетов системы контроля топлива, полученных с помощью бесконтактных считывателей Crocodile

ПРЕДУПРЕЖДЕНИЕ: Состав информации, передаваемой по шине <u>CAN</u> либо шине <u>J1708</u>, может отличаться в зависимости от производителя, модели и года выпуска <u>TC</u>.

1.2 Внешний вид и комплектность


Внешний вид модельного ряда линейки Crocodile представлен на рисунке 4.

- a) CANCrocodile
- 6) 1708Crocodile
- в) NozzleCrocodile и Nozzle BMCrocodile

Рисунок 4 — Внешний вид модельного ряда линейки Crocodile

Комплект поставки Crocodile представлен на рисунке 5 и включает в себя:

- Бесконтактный считыватель Crocodile 1 шт.;
 Вкладыш блистерной упаковки с основными техническими характеристиками и краткой инструкцией по установке Crocodile 1 шт.;
- 3 Инструкция по калибровке* 1 шт.

Рисунок 5 — Комплект поставки Crocodile

^{*} Только в комплекте NozzleCrocodile и Nozzle BMCrocodile.

1.3 Технические характеристики

1.3.1 Основные эксплуатационные характеристики

Основные эксплуатационные характеристики Crocodile приведены в таблице 1.

Таблица 1 — Основные эксплуатационные характеристики Crocodile

	Модели Crocodile			
Наименование показателя, единица измерения	CANCrocodile	1708Crocodile	NozzleCrocodile, Nozzle BMCrocodile	
Допустимый уровень потерь сообщений, %, не более		1	_	
Номинальное напряжение питания для исполнений U5 *, В		5		
Номинальное напряжение питания для исполнений U12/24* , В		12 или 24		
Ток потребления при напряжении питания 5 В, мА, не более	2	00	100	
Ток потребления при напряжении питания 12 В, мА, не более	30		30	
Ток потребления при напряжении питания 24 В, мА, не более	1	20		
Диапазон напряжения питания (при номинальном напряжении питания 5 В), В	от 4,5 до 5,5			
Диапазон напряжения питания (при номинальном напряжении питания 12/24 В), В	от 10 до 50			
Рабочая температура окружающего воздуха, °C	0	т минус 40 до плн	oc 85	
Степень защиты корпуса		IP40		
Габаритные размеры, мм, не более	см. <u>рисунок 6</u>			
Масса, кг, не более	0,1			
Совместимость	SAE J1939, CAN Open, DeviceNet, NMEA 2000	SAE J1587	_	
* См. <u>рисунок 1</u> .				

Бесконтактные считыватели Crocodile Руководство по эксплуатации. Версия 2.0

1.3.2 Габаритные размеры

Габаритные размеры Crocodile приведены на рисунке 6.

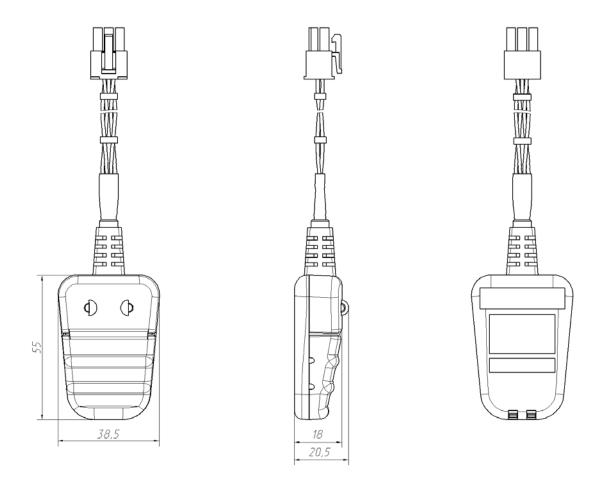


Рисунок 6 — Габаритные размеры Crocodile

1.3.3 Выходной интерфейс CANCrocodile

Выходной интерфейс <u>CANCrocodile</u> — CAN 2.0B, в соответствии с международным стандартом SAE J1939.

1.3.4 Выходной интерфейс 1708Crocodile

Выходной интерфейс $\frac{1708 Crocodile}{1708 Crocodile}$ — J1708, в соответствии с международным стандартом SAE J1587.

1.3.5 Характеристики выходного сигнала NozzleCrocodile и Nozzle BMCrocodile

Характеристики выходного сигнала <u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> приведены в таблице 2.

Таблица 2 — Характеристики выходного сигнала NozzleCrocodile и Nozzle BMCrocodile

Наименование показателя, единицы измерения	Значение
Тип сигнала	импульсный
Частота, Гц, не более	10
Амплитуда, В	от 0 до U _{БС} *
* U _{БС} - напряжение бортовой сети	

Выходной сигнал NozzleCrocodile и Nozzle BMCrocodile представляет собой импульсы напряжения, амплитуда которых меняется от 0 В до значения напряжения бортовой сети. Каждый импульс выходного сигнала NozzleCrocodile формируется в результате расходования определенного объема топлива. Вид выходного сигнала NozzleCrocodile изображен на рисунке 7.

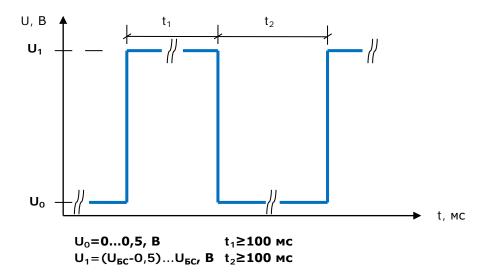


Рисунок 7 — Вид выходного сигнала NozzleCrocodile и Nozzle BMCrocodile

1.3.6 Совместимость Crocodile с терминалами

Технотон гарантирует полную совместимость и совместную точность измерений <u>Crocodile</u> с терминалами СКРТ 45/25/31.

Дополнительная информация по применению Crocodile в системе мониторинга транспорта и контроля расхода топлива **СКРТ**, а также модельный ряд терминалов системы СКРТ и их технические характеристики представлены на сайте http://www.ckpt.ru/.

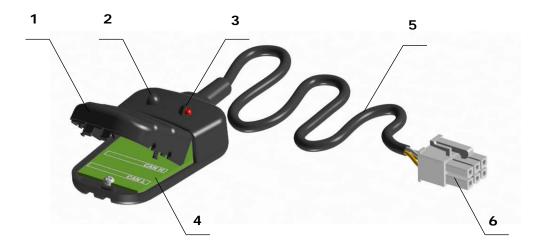
<u>Технотон</u> регулярно проводит испытания на совместимость и совместную точность Crocodile с различными моделями <u>терминалов</u> популярных брендов. В таблице 3 приведены модели терминалов, совместимые с Crocodile и обеспечивающие погрешность совместного измерения расхода топлива не более \pm **1** %.

Таблица 3 — Терминалы мониторинга транспорта, совместимые с Crocodile

	Терминал		AI AI		Модель	
No	бренд	марка	модель	программное обеспечение	Crocodile	
1			<u>31</u>			
2	CKPT	СКРТ	<u>25</u>	ORF-MONITOR	NozzleCrocodile	
3			<u>45</u>			
4	(SALILEOSKY)	GALILEOSKY	<u>GPS</u>	Wialon	NozzleCrocodile	
5	SALILEOSKI	GALILLOSKI	<u>ГЛОНАСС</u>	wiaiori	NOZZIECIOCOGIIE	
6		Автограф	GSM (ГЛОНАСС)	ПО АвтоГРАФ	NozzleCrocodile	
7	ΑβτοΓΡΑΦ	AβTOΓΡΑΦ GSM+	ΠΟ ABTOLPAΦ	CANCrocodile*		
8	TELTONIKA	Teltonika	<u>FM4200</u>	Wielen Heeting	Nozzle BMCrocodile**	
9	, IELI ONIKA	тепопіка	<u>FM5300</u>	Wialon Hosting	NozzleCrocodile	
10	mapon	MapOn	GBOX6	web сервер mapOn	NozzleCrocodile	
11			<u>702X</u>			
12	 \$\tocarus	Lacomica	<u>702R</u>	l acomusimforms on	NozzleCrocodile	
13		Locarus	<u>702S</u>	LocarusInformer		
14			<u>702X</u>		CANCrocodile*	
15	BALTIC CAR EQUIPMENT	ВСЕ	Fm Light	Wialon	NozzleCrocodile	

^{*} Сигнал терминалом обрабатывается корректно.

^{**} Погрешность совместного измерения расхода топлива не более ± 2 %.


Продолжение таблицы 3

Nº	Терминал		Аналитическое	Модель	
14=	бренд	марка	модель	программное обеспечение	Crocodile
16	TITM MODITOPHING GBAC ORPHINGE CRETEMIN GS	VOYAGER	2	RITM-PCN	NozzleCrocodile
17	simbiotecha	Simbiotecha	GATE-FM 200	ПО сервера мониторинга «Система контроля топлива» www.tracking.lt	NozzleCrocodile
18	N AVISET	Naviset	<u>GT-10</u>	сервер GPS-Trace Orange	NozzleCrocodile
19	EcoTelematics Group	NaviFleet	<u>ET100</u>	NaviFleet	NozzleCrocodile

Актуальную информацию о совместимости конкретных моделей терминалов и бесконтактных считывателей Crocodile, а также рекомендации по их подключению и настройке можно получить на сайте http://www.technoton.by/.

1.4 Устройство и принцип действия Crocodile

Устройство Crocodile представлено на рисунке 8.

- 1 корпус;
- 2 светодиодный индикатор наличия питания (красный);
- 3 светодиодный индикатор передачи данных (зеленый);
- 4 электронная плата;
- 5 соединительный кабель;
- 6 разъем* для подключения питания и принимающего устройства (терминала).

Рисунок 8 — Устройство Crocodile

Принцип действия Crocodile основан на считывании электромагнитного поля, которое образуется вокруг проводов при прохождении сигнала.

<u>CANCrocodile</u> и <u>1708Crocodile</u> формируют выходной сигнал, по составу данных идентичный сигналу подключенной шины (<u>CAN</u> и <u>J1708</u> соответственно). Этот сигнал может содержать информацию о режимах работы двигателя, расходе топлива, состоянии датчиков и наличии неисправностей TC.

NozzleCrocodile и Nozzle BMCrocodile преобразуют считанные управляющие импульсы форсунки двигателя ТС в нормированные импульсы, число которых пропорционально объему израсходованного топлива. Особенностью Nozzle BMCrocodile является наличие функции фильтрации помех, которые характерны для управляющих импульсов форсунки двигателей ТОУОТА.

Значения сигналов светодиодных индикаторов Crocodile определяются в соответствии с таблицей 4.

^{*} Поставляется для исполнений **CS** (см. рисунок 1).

Таблица 4 – Значения сигналов светодиодных индикаторов Crocodile

Светодиодный индикатор		Значение сигнала				
Цвет	Состояние	CANCrocodile	1708Crocodile	NozzleCrocodile Nozzle BMCrocodile		
	••••	Идет прием Идет прием сообщений сообщений		Идет передача импульсов		
Зеленый	Не горит	Нет сообщений в шине <u>CAN</u>	Нет сообщений в шине <u>J1708</u>	Нет передачи импульсов		
Knaguuš		Питание подключено				
Красный	Не горит	Нет питания (напряжение питания ниже нормы)				

2 Подключение Crocodile

ВНИМАНИЕ: При установке <u>Crocodile</u> необходимо соблюдать правила техники безопасности при проведении ремонтных работ на автотракторной технике, а также требования техники безопасности, установленные на предприятии. Перед началом работ по подключению Crocodile внимательно ознакомьтесь со схемой электрооборудования и эксплуатационной документацией оснащаемого TC.

2.1 Внешний осмотр перед подключением

Перед подключением проведите внешний осмотр Crocodile на предмет выявления видимых повреждений корпуса, соединительного кабеля, разъема и других возможных дефектов, возникших при перевозке, хранении либо неаккуратном обращении.

При обнаружении дефектов обратитесь к поставщику продукта.

2.2 Рекомендации по поиску проводов шины CAN

Для подключения $\underline{\text{CANCrocodile}}$ к бортовой шине $\underline{\text{CAN}}$, необходимо в $\underline{\text{TC}}$ найти и определить провода CAN-H (CAN HIGH) и CAN-L (CAN LOW).

Физически САN-шина чаще всего представляет собой скрученную (витую) пару проводов (по 30 витков на один погонный метр) с разветвителями для подключения электронных блоков управления (далее - ЭБУ (ECU)) и конечными резисторамитерминаторами с номинальным сопротивлением 120 Ом на концах шины. Резисторы могут устанавливаться отдельно или быть встроенными в ЭБУ.

<u>Пример:</u> Фирма DEUTSCH выпускает CAN шину из специального трехпроводного кабеля (CAN-H, CAN-L и сигнальная «земля») с диаметром наружной оболочки от 7 до 12 мм и специальными разветвителями и конечными устройствами — терминаторами, которые служат для согласования волнового сопротивления при передаче сообщений в шине и для подавления помех (см. рисунок 9).

Рисунок 9 — Элементы шины CAN фирмы DEUTSCH

На TC экологического уровня Eвро-3 и выше может быть от одной до шести и более шин CAN, которые могут обозначаться как M-CAN, T-CAN, I-CAN, H-CAN, A-CAN, EBS-CAN и т.д.

Для контроля расхода топлива представляют интерес только шины T-CAN и M-CAN, которые являются каналами связи между основными электронными блоками управления TC.

Признаками шин T-CAN и M-CAN могут быть:

- наличие диагностического разъёма OBD II (см. рисунок 10);
- цвет и сечение проводов витых пар;
- связь витых пар с контактами в разъёмах ОВD II и ЭБУ.

<u>Пример:</u> Если на ТС имеется диагностический разъем OBD II, то выходящая из него витая пара проводов оранжевого цвета может являться искомой шиной CAN. При этом, провод с черной полосой — это CAN-H, а провод с коричневой полосой — CAN-L.

Рисунок 10 — Примеры расположения диагностического разъема OBD II в кабине TC

Контакты разъема ЭБУ системы ABS/ASR, соответствующие шине CAN, находятся, как указано на рисунке 11.

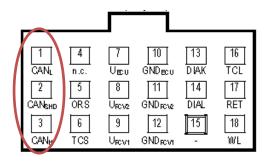


Рисунок 11 — Контакты проводов шины CAN в разъёме ЭБУ системы ABS/ASR

ПРЕДУПРЕЖДЕНИЕ: Признаки шины CAN для TC различных производителей могут не совпадать. Кроме того, признаки могут отличаться у одного и того же производителя, в зависимости от конструктивных особенностей и комплектации TC (применяемого двигателя, системы топливоподачи, связи электронного блока EDC двигателя и педали подачи топлива, наличия или отсутствия электронного щитка приборов, цифрового тахографа и т.п.).

Первичную диагностику и определение работоспособности шины CAN можно провести следующими традиционными методами:

- проверкой на обрыв линий CAN-L и CAN-H с помощью мультиметра;
- проверкой с помощью мультиметра наличия короткого замыкания (КЗ) и импеданса (полного сопротивления, зависящего от терминаторов и от входных сопротивлений электронных блоков, подключенных к шине) между линиями CAN-L и CAN-H:
- измерения с помощью осциллографа уровней напряжения на линиях CAN-L и CAN-H в рецессивном (при выключенном замке зажигания и включенной массе TC) и доминантном состоянии (при включенном замке зажигания и заведенном двигателе).

Проверка импеданса должна производиться при полностью выключенном питании бортовой сети (выключенной массе TC). Контрольное значение импеданса должно быть примерно 60 Ом.

Проверка работоспособности шины CAN производится при включенном замке зажигания, работающем двигателе, нажатии и отпускании педали подачи топлива, между проводами витой пары. Контрольное значение напряжения должно быть от 1,2 до 3,0 В.

При определении проводов CAN-H и CAN-L значения напряжений должны быть следующими:

- в состоянии рецессии примерно 2,5 В (на проводах CAN-L и CAN-H);
- в доминантном состоянии менее 2,5 В (на проводе CAN-L) и более 2,5 В (на проводе CAN-H).

Пример осциллограмм сигналов на проводах CAN-H и CAN-L приведен на рисунке 12.

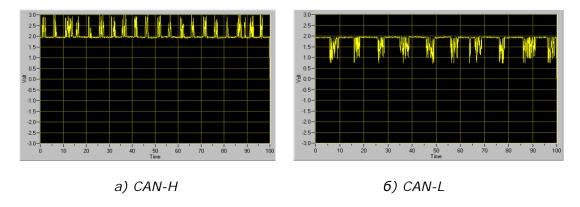
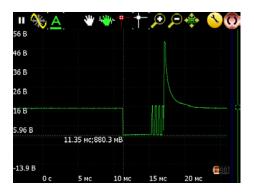


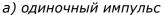
Рисунок 12 — Пример осциллограмм сигналов на проводах шины CAN

2.3 Рекомендации по поиску проводов шины J1708

Для подключения <u>1708Crocodile</u> к бортовой шине J1708 необходимо при помощи осциллографа произвести ее обнаружение и определить провода J1708.A и J1708.B.

Тип сигнала шины J1708 — дифференциальный, амплитуда напряжения на проводах J1708. В изменяется в диапазоне от 0 до 5 В.


2.4 Рекомендации по поиску управляющего провода форсунки


<u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> рекомендуется устанавливать на управляющий провод форсунки первого цилиндра двигателя.

Определение управляющего провода форсунки осуществляется с помощью осциллографа. При этом для различных ТС имеются свои характерные особенности подключения сигнального щупа осциллографа, который в зависимости от наличия доступа к проводам форсунки может подключаться к:

- разъему подключения форсунок;
- блоку управления форсунками;
- жгуту проводов форсунки.

Осциллограммы сигналов управляющих импульсов форсунки двигателя с электронным управлением системой впрыска бензина/сжиженного газа имеют вид, соответствующий рисунку 13.

б) на холостом ходу

Рисунок 13 — Пример осциллограмм сигналов управляющих импульсов форсунки

2.5 Эксплуатационные ограничения

Для установки <u>Crocodile</u> необходимо выбрать сухое место, защищенное от агрессивных воздействий внешней среды.

Crocodile нельзя закреплять рядом с нагревательными и охлаждающими элементами (например, системы климат-контроля). Также не рекомендуется устанавливать Crocodile вблизи силовых электрических цепей автомобиля.

Подходящим местом для установки Crocodile является кабина водителя. При установке в подкапотном пространстве необходимо обеспечить удаленность корпуса Crocodile и его кабеля от вращающихся частей и поверхностей двигателя не менее чем на 10 см.

2.6 Электрическое подключение

Питание <u>Crocodile</u> может осуществляться от бортовой сети <u>TC</u> либо от терминала системы мониторинга транспорта.

важно:

- **1)** Перед началом работ необходимо обесточить электрические цепи ТС, воспользовавшись выключателем АКБ либо сняв с АКБ контактные клеммы.
- **2)** При подключении питания Crocodile к бортовой сети TC рекомендуется в цепи питания устанавливать **плавкие предохранители** (приобретаются отдельно) (см. рисунок 14 a). Номинальный ток предохранителя не более 2 A.

- **3)** Провода питание «+» и масса «-» подключайте к тем же точкам бортовой сети, к которым подключены соответствующие провода терминала.
- **4)** Перед началом работ по электрическому подключению Crocodile обратите особое внимание на проверку качества массы ТС. Сопротивление между любой точкой массы ТС и клеммой «-» АКБ либо между клеммами выключателя массы не должно превышать 1 Ом.

Для подключения проводов питания Crocodile рекомендуется использовать **клеммы** (см. рисунок 14 б), а для подключения сигнальных проводов — **коннекторы** (см. рисунок 14 в).

Рисунок 14 — Аксессуары для подключения Crocodile

Электрическое подключение <u>CANCrocodile</u> производится в соответствии с цоколевкой разъема и назначением проводов интерфейсного кабеля согласно таблице 5.

Таблица 5 — Назначение проводов соединительного кабеля CANCrocodile

Цоколевка	Номер	П	Провод		Сигн	нал	
разъема	KOHTAKTA NA		Цвет		Наименова- ние	Тип	
	1	VBAT	Оранжевый		Напряжение питания	Аналоговый, напряжение от 10 до 50 В	
4 000 6	2	GND	Коричневый		Macca «-»	_	
1 999 3	3	CANH	Голубой		CAN HIGH	Цифровой, согласно	
	4	CANL	Белый		CAN LOW	стандарту SAE J1939	

Электрическое подключение <u>1708Crocodile</u> производится в соответствии с назначением проводов интерфейсного кабеля и цоколевкой разъема* согласно таблице 6.

Таблица 6 - Назначение проводов соединительного кабеля 1708Crocodile

Поколевка	Цоколевка Номер		Провод			гнал	
разъема*	контакта разъема	Марки- ровка	Цвет		Наименова- ние	Тип	
	1	J1708.A	Белый		J1708.A	Цифровой, согласно	
3 9 4	2	J1708.B	Красный		J1708.B	стандарту SAE J1587	
1 2 2	3	VBAT	Оранже- вый		Напряжение питания	Аналоговый, напряжение от 10 до 50 В	
	4	GND	Коричне- вый		Macca «-»	_	

Электрическое подключение <u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> производится в соответствии с назначением проводов интерфейсного кабеля согласно таблице 7.

Таблица 7 - Назначение и маркировка проводов соединительного кабеля NozzleCrocodile и Nozzle BMCrocodile

Провод			вод Сигнал		
Маркировка	Цвет		Наименование	Тип	
VBAT	Оранжевый		Напряжение питания	Аналоговый, напряжение от 10 до 50 В	
GND	Коричневый		Macca «-»	_	
T701	Розовый		Выходной сигнал	Импульсный (см. <u>1.3.5</u>)	

После электрического подключения Crocodile включите АКБ (зажигание).

^{*} Поставляется для исполнений **CS** (см. рисунок 1).

2.7 Бесконтактное подключение к автомобильным проводам

Для бесконтактного подключения <u>Crocodile</u> к автомобильным проводам выполните последовательность действий согласно рисунку 15.

- 1 расфиксируйте защелки крышки Crocodile. Для чего вставьте шлиц небольшой отвертки в щель между крышкой и основанием корпуса Crocodile и затем слегка поверните отвертку вдоль ее продольной оси.
- 2 приоткройте крышку Crocodile.
- 3 произведите укладку соответствующих проводов в пазы крышки корпуса Crocodile согласно нанесенной на электронную плату маркировке.
- 4 закройте крышку корпуса Crocodile до фиксации ее защелок.

Рисунок 15 — Последовательность действий для бесконтактного подключения Crocodile

РЕКОМЕНДАЦИЯ: Для снижения чувствительности Nozzle BMCrocodile к воздействию кондуктивных помех, используйте подключение по **методу Ивашкевича**. Суть метода заключается в том, что вместо провода GND JET в соответствующий паз крышки Nozzle BMCrocodile укладывается коричневый провод GND (масса «-») соединительного кабеля. Метод Ивашкевича как правило обеспечивает более устойчивое считывание управляющих имульсов форсунки во всем диапазоне частоты оборотов двигателя.

Примеры подключения Crocodile к проводам TC приведены на рисунке 16.

Рисунок 16 — Примеры подключення Crocodile к проводам TC

3 Проверка функционирования

Подключенный <u>Crocodile</u> начинает работать с момента подачи питания (включении зажигания). При отключении питания (выключении зажигания) Crocodile отключается.

При правильном подключении Crocodile значения сигналов красного и зеленого светодиодных индикаторов, расположенных на его корпусе, должны соответствовать $\frac{1}{100}$ таблице 4.

ВНИМАНИЕ: В <u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> при корректном подключении проводов форсунки, частота мигания зеленого светодиодного индикатора возрастает с увеличением частоты оборотов двигателя.

Если с увеличением частоты оборотов двигателя частота мигания зеленого светодиодного индикатора снижается, то проверьте правильность укладки проводов форсунки и при необходимости поменяйте их местами.

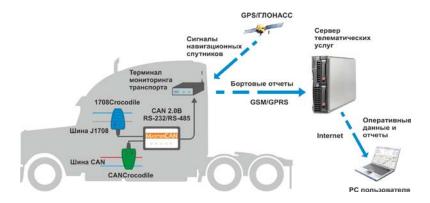
4 Калибровка NozzleCrocodile и Nozzle BMCrocodile

Каждому выходному импульсу <u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> соответствует определенный объем израсходованного топлива. При этом цена импульса для каждого автомобиля индивидуальна.

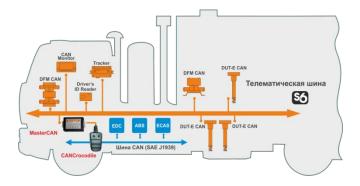
При расчете израсходованного объема топлива телематической системой используется калибровочный коэффициент С. Для его определения следует калибровать NozzleCrocodile и Nozzle BMCrocodile на каждом автомобиле по следующей методике:

- **1)** Установить в терминале/на сервере начальное значение калибровочного коэффициента **C=300 имп/л**.
- 2) Заправить бак до полного.
- **3)** В характерном для данного автомобиля режиме работы израсходовать не менее **20** % объема бака.
- 4) Заправить бак до полного (на той же АЗС).
- **5)** Определить израсходованный объем топлива по показаниям заправочной колонки **(V)**.
- **6)** Определить израсходованный объем топлива по показаниям телематической системы **(W)**.
- 7) Рассчитать калибровочный коэффициент С по формуле:

$$C = \frac{300 \cdot W}{V}$$
 , имп/л


8) Установить рассчитанное значение калибровочного коэффициента **С** в терминале/на сервере.

5 Интеграция бортовых информационных шин CAN и J1708 в системы транспортной телематики


<u>MASTERCAN</u> применяются как готовое решение для интеграции бортовых информационных шин <u>CAN</u> и <u>J1708</u> с системой транспортной телематики (см. рисунок 17 a).

MasterCAN фильтруют считанную Crocodile информацию бортовых шин автомобиля, отсеивают ненужные данные и формируют выходные сообщения, которые содержат наиболее ценные для телематической системы параметры работы техники.

Кроме того, интерфейсы MasterCAN в комплексе с Crocodile удобно использовать для сбора данных от датчиков и периферийных устройств одной или нескольких штатных бортовых шин CAN (J1708) и передачи информации в **телематическую шину** (см. рисунок 17 б).

а) для интеграции бортовых информационных шин CAN и J1708 с системой транспортной телематики

б) для объединения штатной бортовой шины CAN и телематической шины S6

Рисунок 17 — Использование бесконтактных считывателей Crocodile в комплексе с интерфейсами данных автомобиля MasterCAN

Имеются следующие модели интерфейсов данных автомобиля:

- <u>MasterCAN CC</u> для приема данных бортовой шины <u>CAN</u>, их обработки, преобразования, передачи <u>FMS</u>-сообщений и сформированных сообщений Telematics в интерфейс CAN 2.0B;
- <u>MasterCAN C 232/485</u> для приема данных бортовой шины CAN, их обработки, преобразования, передачи сформированных сообщений в интерфейсы RS-232 и RS-485:
- <u>MasterCAN V-GATE</u> для приема данных бортовых шин CAN и <u>J1708</u>, их обработки, преобразования, передачи FMS-сообщений и сформированных сообщений Telematics в интерфейс CAN 2.0B и сообщений в интерфейс RS-232.

Входные/выходные интерфейсы (протоколы) моделей MasterCAN приведены в таблице 8.

Таблица 8 — Входные/выходные интерфейсы (протоколы) моделей MasterCAN

Модели MasterCAN	Входной интерфейс (протокол)	Выходной интерфейс (протокол)
The state of the s	CAN (SAE J1939)	CAN 2.0B (SAE J1939)
A CONTRACTOR OF THE PARTY OF TH	CAN (SAE J1939)	RS-232 и RS-485 (ASCII/Modbus/DUT-E COM)
The state of the s	CAN (SAE J1939) и J1708 (SAE J1587)	CAN 2.0B (SAE J1939) и RS-232 (ASCII/Modbus/DUT-E COM)

Примеры схем подключения терминала при совместном использовании CANCrocodile (1708Crocodile) и MasterCAN для безопасного получения телематической информации из бортовых шин CAN (J1708) приведены в приложении A.

Содержание выходных сообщений, порядок настройки и другая подробная информация о MasterCAN приведена в документе <u>Интерфейсы данных автомобиля MasterCAN</u>. <u>Руководство по эксплуатации</u>.

6 Использование индикатора расхода топлива DFM і

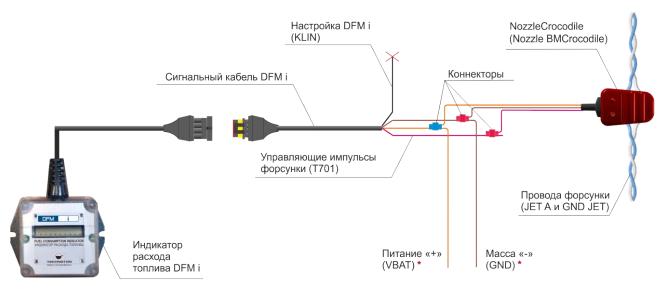
Для регистрации и отображения на дисплее информации об измеренном с помощью $\underline{\text{NozzleCrocodile}}$ и $\underline{\text{Nozzle BMCrocodile}}$ расходе бензина/сжиженного газа удобно исполь-

зовать **индикатор расхода топлива** (см. рисунок 18), разработанный СП <u>Технотон</u>.

Рисунок 18 — Индикатор расхода топлива DFM i

DFM і может быть установлен в кабине водителя либо в другом месте TC, удобном для визуального считывания показаний.

Отличительные особенности DFM i:


- легкая и компактная конструкция;
- регистрация мгновенного расхода топлива;
- учет суммарного расхода топлива;
- учет времени работы потребителя топлива общего и в различных режимах работы;
- удобный просмотр показаний счетчиков в кабине водителя;
- защита от накрутки;
- переключение режимов индикации (ключ-таблетка в комплекте);
- **автономное питание до 2-х лет от встроенной батареи** при отсутствии бортовой сети;
- совместимость с датчиками расхода топлива различных производителей;
- низкая стоимость.

Основные технические характеристики <u>DFM і</u> приведены в таблице 9.

Таблица 9 — Основные технические характеристики DFM i

Наименование показателя, единица измерения	Значение
Диапазон регистрации расхода, л/ч	от 0,5 до 1000
Входной сигнал	импульсный
Цена входного импульса, мл/имп	настраиваемая, от 0,1 до 50,0
Входное сопротивление измерительного входа, кОм, не менее	50
Диапазон рабочих температур окружающей среды, °С	от минус 20 до плюс 60
Габаритные размеры (без жгута), мм, не более	75x60x30
Масса, кг, не более	0,3

Схема подключения индикатора расхода топлива DFM і для совместной работы с <u>NozzleCrocodile</u> и <u>Nozzle BMCrocodile</u> приведена на рисунке 19.

^{*} Провода подключать к тем же точкам бортовой сети, к которым подключены соответствующие провода терминала мониторинга транспорта.

Рисунок 19— Схема подключения индикатора расхода топлива DFM і для совместной работы с NozzleCrocodile и Nozzle BMCrocodile

Подробные технические характеристики индикатора расхода топлива DFM і, порядок его настройки и подключения, а также описание отображаемых на дисплее данных приведены в документе <u>Расходомеры топлива DFM. Руководство по эксплуатации</u>.

7 Отключение Crocodile

ВАЖНО: Перед отключением <u>Crocodile</u> обесточьте электрические цепи <u>TC</u>. Для этого воспользуйтесь выключателем аккумуляторной батареи (АКБ) либо снимите контактные клеммы с АКБ.

Для отключения Crocodile необходимо произвести следующую последовательность действий:

- **1)** Оключите разъём соединительного кабеля (провода) Crocodile от терминала мониторинга транспорта. При питании Crocodile от бортовой сети, необходимо отключить провода питание «+» и массу «-» соединительного кабеля Crocodile от точек подключения к бортовой сети.
- 2) Приоткройте крышку Crocodile. Для чего вставьте шлиц небольшой отвертки в щель между крышкой и основанием корпуса Crocodile. Затем, слегка повернув отвертку вдоль ее продольной оси, расфиксируйте защелки крышки (см. рисунок 15).
- 3) Извлеките из пазов крышки корпуса Crocodile провода TC.

После отключения Crocodile может быть использован для нового подключения к проводам TC.

8 Упаковка

<u>Crocodile</u> поставляются в блистерной упаковке*, вид которой представлен на рисунке 20.

a) CANCrocodile

6) 1708Crocodile

в) NozzleCrocodile

r) Nozzle BMCrocodile

Рисунок 20 — Виды спереди и сзади блистерной упаковки Crocodile

На обратной стороне вкладыша блистерной упаковки Crocodile указана следующая информация:

- основные технические характеристики;
- краткая инструкция по подключению;
- назначение светодиодных индикаторов;
- назначение проводов соединительного кабеля;
- гарантийный срок эксплуатации.

^{*} Crocodile исполнений **L2** (см. <u>рисунок 1</u>) поставляются в картонной коробке.

9 Хранение

<u>Crocodile</u> может храниться в закрытых или других помещениях с естественной вентиляцией, без искусственно регулируемых климатических условий, неотапливаемых хранилищах.

Хранение Crocodile допускается только в заводской упаковке при температуре от минус 50 до плюс $40\,^{\circ}$ C и относительной влажности до $100\,\%$ при $25\,^{\circ}$ C.

Не допускается хранение Crocodile в одном помещении с веществами, вызывающими коррозию металла и содержащими агрессивные примеси.

10 Транспортирование

<u>Crocodile</u> транспортируется в закрытом транспорте любого вида, обеспечивающем защиту от механических повреждений и исключающем попадание атмосферных осадков на упаковку.

Воздушная среда в транспортных средствах не должна содержать кислотных, щелочных и других агрессивных примесей.

11 Утилизация

<u>Crocodile</u> не содержит вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды в процессе и после окончания срока службы, а также при утилизации.

Crocodile не содержит драгоценных металлов в количестве, подлежащем учету.

Контактная информация

Производитель

СП Технотон

220033 Республика Беларусь, г. Минск,

Партизанский проспект, 2

Тел/факс: (+375 17) 223-78-20

E-mail: marketing@technoton.by

www.technoton.by

Техподдержка

E-mail: support@technoton.by

Приложение A Примеры схем безопасного подключения терминала к автомобильным информационным шинам CAN (J1708)

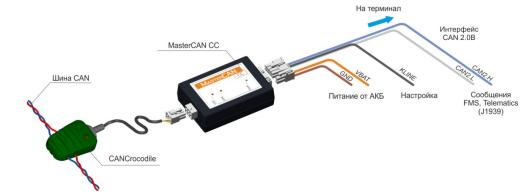


Рисунок А.1 — Получение телематической информации из бортовой шины CAN по интерфейсу CAN 2.0B

Рисунок А.2 — Получение телематической информации из бортовой шины CAN по интерфейсам RS-232/RS-485

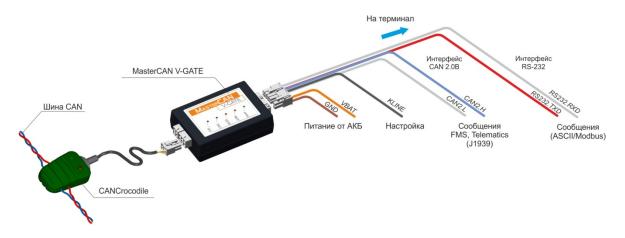


Рисунок А.3 — Получение телематической информации из бортовой шины CAN по интерфейсам CAN 2.0B и RS-232

Продолжение приложения А

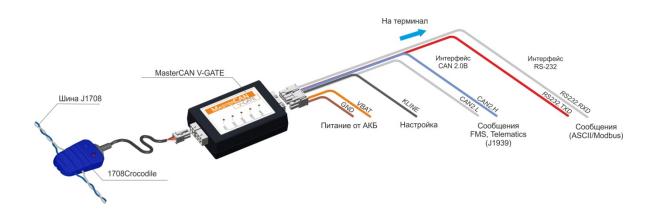


Рисунок А.4 — Получение телематической информации из бортовой шины J1708 по интерфейсам CAN 2.0B и RS-232

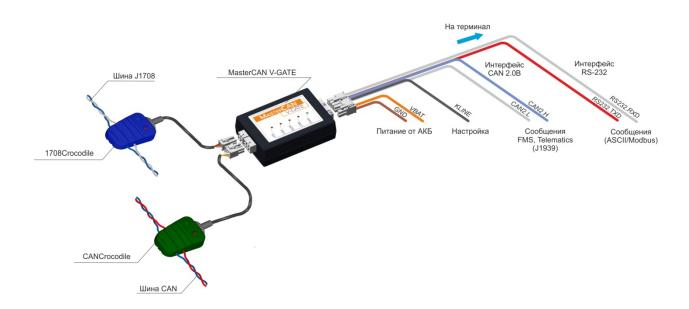


Рисунок А.5 — Получение телематической информации из бортовых шин CAN и J1708 по интерфейсам CAN 2.0B и RS-232