

ДАТЧИКИ УРОВНЯ ТОПЛИВА

SK DUT-E

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ (включает руководство пользователя ПО Service DUT-E)

Версия 5.2

Содержание

В	ведение	. 5
1	Основные сведения и технические характеристики DUT-E	. 7
	1.1 Назначение и область применения	. 7
	1.2 Внешний вид и комплектность	. 9
	1.3 Устройство и принцип работы	10
	1.4 Технические характеристики	12
	1.4.1 Основные характеристики	12
	1.4.2 Характеристики выходного сигнала DUT-E AF	13
	1.4.3 Характеристики выходного сигнала DUT-E A5, DUT-E A10 и DUT-E I	13
	1.4.4 Характеристики выходного сигнала DUT-E 232 и DUT-E 485	14
	1.4.5 Характеристики выходного сигнала DUT-E CAN	15
	1.4.6 Совместимость DUT-E с терминалами	16
	1.4.7 Взрывозащищенное исполнение DUT-E	18
	1.5 Габаритные размеры DUT-E	19
2	Установка DUT-Е	20
	2.1 Внешний осмотр перед началом работ	20
	2.2 Установка на место штатного топливного датчика	20
	2.3 Установка в специальное отверстие	21
	2.4 Обрезка измерительной части по глубине бака	24
	2.5 Наращивание длины	25
	2.6 Крепление	26
	2.7 Электрическое подключение	27
	2.7.1 Электрическое подключение DUT-E AF	28
	2.7.2 Электрическое подключение DUT-E A5, DUT-E A10, DUT-E I	28
	2.7.3 Электрическое подключение DUT-E 232 и DUT-E 485	29
	2.7.4 Электрическое подключение DUT-E CAN	30
	2.8 Контроль двух и более баков	31
	2.8.1 Суммирование показаний DUT-E 232	31
	2.8.2 Суммирование показаний DUT-E AF	34
	2.8.3 Суммирование показаний DUT-E CAN	36
	2.9 Пломбирование	37
3	Настройка датчиков с помощью сервисного комплекта	38
	3.1 Назначение SK DUT-E	38
	3.2 Требования к ПК	38

3.3 Состав сервисного комплекта 3	;9
3.3.1 Внешний вид и комплектность 3	;9
3.3.2 Универсальный сервисный адаптер 4	0
3.3.3 Кабель USB А-В 4	-0
3.3.4 Сервисный кабель RS-485 4	1
3.3.5 Сервисный кабель RS-232 4	-2
3.3.6 Сервисный кабель AF 4	-3
3.3.7 Сервисный кабель CAN 4	4
3.4 Установка ПО 4	-5
3.4.1 Установка драйвера USB 4	-5
3.4.2 Установка ПО Service DUT-E 4	-7
3.5 Подключение SK DUT-E 4	8
3.5.1 Внешний осмотр перед подключением 4	8
3.5.2 Эксплуатационные ограничения 4	-9
3.5.3 Подключение DUT-E к ПК 4	-9
3.6 Проверка функционирования 5	51
3.7 Запуск ПО 5	52
3.8 Интерфейс ПО, предварительная настройка 5	;3
3.9 Профиль DUT-E 5	64
3.9.1 Команда Загрузить профиль 5	64
3.9.2 Команда Сохранить профиль 5	54
3.9.3 Команда Печать профиля 5	5
3.10 Описание вертикального меню 5	6
3.10.1 Паспорт 5	6
3.10.2 Авторизация 5	6
3.10.3 Настройки - Калибровка 5	8
3.10.4 Настройки - Режим работы 5	;9
3.10.5 Настройки-Термокоррекция 6	0
3.10.6 Настройки - Выходное сообщение 6	51
3.10.7 Настройки - Таблица тарировки 6	51
3.10.8 Настройки - Интерфейс 6	52
3.10.9 Настройки – Аналоговый выход 6	53
3.10.10 Диагностика 6	64
3.11 Перепрошивка	6
3.12 Завершение работы с ПО и отключение DUT-E 6	57
3.13 Отключение SK DUT-E 6	57
3.14 Удаление ПО Service DUT-E 6	58

4 Проверка точности измерений 69
4.1 Основные положения 69
4.2 Порядок проведения контрольных испытаний 69
5 Аксессуары 70
5.1 Монтажный комплект МК DUT-E 70
5.2 Устройство сопряжения УС-1 71
5.3 Фильтр-сетка
5.4 Соединительные кабели 72
5.5 Дополнительные аксессуары 74
6 Диагностирование и устранение неисправностей
6.1 Диагностирование и устранение неисправностей DUT-E
с аналоговым выходным сигналом 75
6.2 Диагностирование и устранение неисправностей DUT-E
с частотным выходным сигналом 76
6.3 Диагностирование и устранение неисправностей DUT-E
с цифровым выходным сигналом 76
7 Техническое обслуживание
7.1 Общие указания 77
7.2 Демонтаж 77
7.3 Осмотр 77
7.4 Очистка 78
8 Упаковка
9 Хранение
10 Транспортирование
11 Утилизация 80
Контактная информация 81
Приложение А Образец протокола контрольных испытаний 82
Приложение Б Варианты подключения DUT-E CAN
Приложение В Сообщения протокола передачи данных DUT-E CAN
Приложение Г Схема подключения нескольких DUT-E CAN для суммирования показаний 90
Приложение Д Пример распечатки профиля DUT-E
Приложение Е Предметный указатель
Приложение Ж Видеография

Введение

Рекомендации и правила, изложенные в Руководстве по эксплуатации относятся к **датчикам уровня топлива DUT-E** (далее — DUT-E) и **сервисному комплекту SK DUT-E** (далее — SK DUT-E), разработанным СП Технотон, город Минск, Республика Беларусь.

Настоящий документ содержит сведения о конструкции, принципе действия, характеристиках, а также рекомендации по эксплуатации и установке DUT-E. Кроме того, настоящий документ определяет порядок подключения и использования SK DUT-E, а также описание установки и использования входящего в его комплект программного обеспечения Service DUT-E версии от 3.22 и выше.

SK DUT-E обеспечивает обмен данными между датчиком при его настройке и персональным компьютером (далее — ПК).

Отличительные особенности DUT-E:

- соответствие отечественным и европейским автомобильным стандартам;
- возможность уменьшения длины без необходимости калибровки*;
- наращивание длины до 6 м с помощью дополнительных секций;
- эргономичное байонетное крепление позволяет экономить время на монтаже;
- уникальный донный пружинный упор усиливает жесткость крепления;
- фильтр-сетка надежно защищает от воды и грязи;
- полный набор монтажных элементов и кабель в комплекте;
- термокоррекция с настраиваемым коэффициентом позволяет проводить автоматическую коррекцию измерений, исходя из температуры окружающей среды **;
- самодиагностика датчика позволяет контролировать достоверность данных**;
- возможность интеграции в бортовую информационную шину транспортных средств ***;
- встроенный стабилизатор питания выходной сигнал не зависит от напряжения бортовой сети;
- защита от переполюсовки и короткого замыкания по любому из выводов на бортовую сеть и на корпус;
- пломбировочные отверстия для пресечения несанкционированного вмешательства в работу датчика;
- надежность и безотказность, подтвержденные финансовой гарантией.

ВНИМАНИЕ! При эксплуатации DUT-E и SK DUT-E необходимо строго придерживаться рекомендаций производителя, указанных в настоящем Руководстве по эксплуатации.

Руководство предназначено для специалистов, ознакомленных с правилами выполнения ремонтных и монтажных работ на автотранспорте и владеющих профессиональными знаниями в области электронного и электрического оборудования различных транспортных средств.

Для обеспечения правильного функционирования DUT-E их установка и настройка должна осуществляться сертифицированными специалистами, прошедшими **фирменное обучение**. С подробностями можно ознакомиться на сайте: <u>http://www.technoton.by/</u>.

^{*} DUT-E A5, DUT-E A10 и DUT-E I.

^{**} DUT-E AF, DUT-E 232, DUT-E 485 и DUT-E CAN.

^{***} DUT-E CAN.

Условное обозначение DUT-Е для заказа формируется в соответствии с рисунком 1.

Номинальная длина измерительной части (в мм) *: A5, A10, I: **350**; **500**; **700**

AF, 232, 485, CAN: 700; 1000

Для настройки исполнений DUT-E AF, DUT-E 232, DUT-E 485 и DUT-E CAN используется Сервисный комплект SK DUT-E (приобретается отдельно).

<u>Примеры записи DUT-E при заказе:</u>

«Датчик уровня топлива DUT-E A10 L=700 мм»,

(выходное напряжение от 2,5 до 9,0 В, длина сборной измерительной части 700 мм).

«Измерительная головка датчика уровня топлива DUT-E 232 Base»,

(цифровой интерфейс RS-232, без штатной измерительной части).

Производитель гарантирует соответствие датчиков DUT-E требованиям технических нормативных правовых актов при соблюдении условий хранения, транспортирования и эксплуатации, а также указаний по применению, установленных в настоящем Руководстве по эксплуатации.

ВНИМАНИЕ! Производитель оставляет за собой право изменять без согласования с потребителем технические характеристики DUT-E, не ведущие к ухудшению их потребительских качеств.

* Соответствует наружной высоте наиболее распространенных баков. По требованию Заказчика возможно изготовление DUT-E с измерительной частью любой длины до 1400 мм при следующей квартальной потребности в датчиках:

- DUT-E A5, DUT-E A10 и DUT-E I от 500 шт.;
 - DUT-E AF, DUT-E 232, DUT-E 485 и DUT-E CAN от 100 шт.
- ** Поставляется в исполнениях DUT-E 232 и DUT-E 485 без штатной измерительной части. Применяется совместно с дополнительными секциями DUT-E.

1 Основные сведения и технические характеристики DUT-E

1.1 Назначение и область применения

ПЦТ-Е предназначен для измерения уровня жидкого топлива и других неэлектропроводных жидкостей в баках автотракторной техники и стационарных емкостях (см. рисунок 2).

Рисунок 2 — Назначение DUT-E

Область применения — используются как дополнительные датчики в составе систем мониторинга транспорта и контроля расхода топлива (см. рисунок 3), либо для замены штатных датчиков указателя уровня топлива.

Рисунок 3— Применение DUT-E в системе мониторинга транспорта и контроля расхода топлива

DUT-Е устанавливают в бак транспортного средства (далее — TC). Датчик измеряет уровень топлива в баке и формирует выходной сигнал (см. 1.4.2 — 1.4.5) для передачи на терминал мониторинга транспорта.

Терминал осуществляет сбор, регистрацию, хранение полученных сигналов и их передачу на сервер телематических услуг. Установленное на сервере программное обеспечение производит обработку и анализ полученных данных и формирует аналитические отчеты за выбранный период времени.

Отчеты позволяют пользователю анализировать данные объема топлива в баке TC (см. рисунок 4).

Рисунок 4 — Пример анализа данных, полученных с помощью DUT-E

Применение DUT-E в составе транспортной телематической системы позволяет владельцу транспорта:

- получать достоверную информацию о текущем количестве топлива в баке машины;
- определять точный объем заправок автомобиля;
- выявлять факты воровства топлива из бака;
- контролировать расход топлива.

1.2 Внешний вид и комплектность

Комплект поставки DUT-Е представлен на рисунке 5 и включает в себя:

1	- датчик DUT-Е в сборе	– 1 шт.;
2	- паспорт	– 1 шт.;
3	- жгут* (7,5 м)	– 1 шт.;
4	- донный упор	– 1 шт.;
5	- фильтр-сетка	– 1 шт.;
6	- крепежная пластиковая пластина	– 1 шт.;
7	- резиновая прокладка под крепежную пластину	– 2 шт. **;
8	- уплотнительное резиновое кольцо крепежной	
	пластиковой пластины	– 2 шт. **;
9	- ВИНТ	– 5 шт.;
10	- винт-саморез	– 5 шт.;
11	- пластмассовая пломба	– 2 шт.;

12 - пломбировочный канат

– 2 шт.

Рисунок 5 — Комплект поставки DUT-E

** 1 шт. – используется при установке DUT-E и 1 шт. – запасной элемент.

^{*} Для DUT-E CAN жгут (7 м) приобретается отдельно.

1.3 Устройство и принцип работы

Датчик уровня топлива **DUT-E** (см. рисунок 6) состоит из измерительной части **1**, измерительной головки **2** с находящейся внутри электронной платой и интерфейсного кабеля **3** с разъемом электрического подключения **4**.

DUT-E CAN

Рисунок 6 — Устройство DUT-E

Принцип работы DUT-E основан на измерении электрической емкости конденсатора, в качестве обкладок которого используются трубки измерительной части датчика. Электрическая емкость изменяется в зависимости от глубины погружения измерительной части в топливо, которое по своим свойствам является диэлектрической жидкостью. Электронная плата датчика анализирует текущее значение электрической емкости и формирует соответствующий выходной сигнал.

Пересчет уровня топлива в баке в объем топлива производится по тарировочной таблице, для составления которой необходимо провести процедуру **тарировки бака**. Данная процедура представляет собой последовательность заправок топлива фиксированными порциями в бак от пустого до полного состояния. В процессе тарирования устанавливается зависимость величины выходного сигнала DUT-E от объема топлива в конкретном топливном баке. Подробное описание процедуры тарировки бака TC при установке DUT-E приведено в документе **«Датчик уровня топлива DUT-E. Инструкция по установке»**.

DUT-Е может использоваться совместно с устройствами регистрации и отображения (в том числе с терминалами систем GPS/ГЛОНАСС мониторинга транспорта), характеристики входных интерфейсов которых совместимы с параметрами выходных сигналов DUT-E согласно 1.4.2 — 1.4.5.

При использовании датчиков DUT-E AF, DUT-E A5, DUT-E A10 и DUT-E I вычисление объема топлива производится в устройстве регистрации (например, в GPS/ГЛОНАСС-трекере) либо на сервере услуг программным обеспечением системы мониторинга транспорта.

Датчики DUT-E 232, DUT-E 485 и DUT-E CAN могут самостоятельно рассчитывать текущий объем топлива в баке в соответствии с тарировочной таблицей, вносимой во внутреннюю память датчика при помощи сервисного комплекта SK DUT-E.

1.4 Технические характеристики

Питание DUT-E осуществляется от бортовой сети оснащаемого TC.

DUT-Е могут эксплуатироваться в условиях умеренного и холодного климата.

По стойкости к механическим воздействиям DUT-E являются вибропрочными и ударопрочными.

1.4.1 Основные характеристики

Основные характеристики DUT-Е приведены в таблице 1.

Таблица 1 — Основные характеристики DUT-E

Наименование показателя, единица измерения	Значение			
Принцип действия	Емкостной			
Относительная погрешность измерения (к длине измерительной части), %, не более	±1			
Диапазон напряжения питания, В	от 10 до 50			
Ток потребления при напряжении питания 12 В, мА, не более	50*			
Ток потребления при напряжении питания 24 В, мА, не более	25*			
Время готовности после включения питания, с, не более	10			
Температурный диапазон, °С	от минус 40 до плюс 85			
Степень защиты корпуса	IP55/57			
Электромагнитная совместимость	 защита от электростатических разрядов, степень жесткости II (ГОСТ 30378, ГОСТ Р 50607); защита от кондуктивных помех, степень жесткости IV (СТБ ISO 7637-2, ГОСТ 28751). 			
* Для DUT-E CAN ток потребления при напряжении питания 12 В — не более 150 мА.				

а при напряжении питания 24 В — не более 75 мА.

1.4.2 Характеристики выходного сигнала DUT-E AF

Датчик DUT-E AF имеет настраиваемый с помощью интерфейса K-Line (ISO 14230) аналоговый либо частотный выход.

Выходной сигнал DUT-E AF линейно зависит от измеряемого уровня топлива в баке и не зависит от напряжения питания.

Разрядность цифро-аналогового преобразования выходного сигнала — 12 бит.

Диапазоны изменения выходного сигнала DUT-E AF:

 аналогового напряжения — от 1,0 до 9,0 В. При этом, нижний уровень выходного напряжения может быть задан в диапазоне от 1,0 до 8,0 В, верхний уровень в диапазоне от 2,0 до 9,0 В;

Примечание — Изменение выходного напряжения датчика может быть задано как в прямой, так и в обратной зависимости.

частотного — от 500 до 1500 Гц. Выходной частотный сигнал датчика имеет форму меандра. Скважность — 50 %. Значение напряжения высокого уровня равно (10^{+1,5}_{-1,0}) В. Значение напряжения низкого уровня — не более 0,5 В.

Значение выходного сигнала DUT-E AF в зависимости от настройки может соответствовать:

- уровню топлива в баке (мм);
- объему топлива (л);
- сумме объемов топлива (л) до 8 баков.

Выходной сигнал DUT-E AF, соответствующий объему топлива, формируется в соответствии с тарировочной таблицей, записанной во внутреннюю память датчика.

Входное сопротивление устройства, к которому подключается DUT-E AF при частотном выходном сигнале — не менее 10 кОм;

При выходном сигнале аналогового напряжения значения выходного сопротивления: низкого уровня — не более 5 кОм, высокого уровня — не более 50 кОм.

1.4.3 Характеристики выходного сигнала DUT-E A5, DUT-E A10 и DUT-E I

Величины аналогового напряжения выходного сигнала (для DUT-E A5 и DUT-E A10) и аналогового тока выходного сигнала (для DUT-E I) линейно зависят от измеряемого уровня топлива в баке.

Выходные сигналы датчиков не зависят от величины напряжения питания.

Входное сопротивление устройства, к которому подключаются DUT-E A5 и DUT-E A10, должно быть не менее 10 кОм.

Входное сопротивление устройства, к которому подключается DUT-E I, должно быть не более 260 Ом (при напряжении питания 12 В) или не более 800 Ом (при напряжении питания 24 В).

Для корректной работы DUT-E I разница между минимальным напряжением бортовой сети и напряжением на нагрузке при полном баке должна быть не менее 5 В.

Характеристики выходного сигнала DUT-E A5, DUT-E A10 и DUT-E I приведены в таблице 2.

140-0-000000	Hanania	Напряж	ение, В	Ток, мА	
DUT-E	бака	при номи- нальной длине	после обрезки на 30%	при номи- нальной длине	после обрезки на 30%
	Пустой	1.5	0.9	-	-
DUT-E AS	Полный	4.5	3.7	-	-
	Пустой	2.5	1.0	-	-
DOT-E ATO	Полный	9.0	5.6	-	-
	Пустой	-	-	6.7	4.0
DUI-EI	Полный	-	-	20.0	16.4

Таблица 2 — Характеристики выходного сигнала DUT-E A5, DUT-E A10 и DUT-E I

1.4.4 Характеристики выходного сигнала DUT-E 232 и DUT-E 485

Характеристики выходного сигнала DUT-E 232 и DUT-E 485 соответствуют спецификациям интерфейсов RS-232 и RS-485 соответственно.

Результаты измерений DUT-E 232 и DUT-E 485 могут быть переданы по цифровому интерфейсу в виде:

- условных единиц, от 0 до 1000 (0 пустой бак, 1000 полный бак);
- уровня топлива в баке, мм;
- объема топлива, л;
- объема топлива относительно полного бака, %.

Кроме данных об уровне топлива в баке, DUT-E передает также информацию о текущей температуре (измеряется датчиком, расположенным на электронной плате).

Передача данных DUT-E 232 и DUT-E 485 осуществляется согласно **Протоколу DUT-E COM**. Актуальную версию документа можно скачать на сайте <u>http://www.technoton.by/</u>.

1.4.5 Характеристики выходного сигнала DUT-E CAN

Характеристики выходного сигнала DUT-E CAN соответствуют спецификации

шины (разработанной СП Технотон для интеграции систем мониторинга транспорта с элементами электрооборудования автомобиля и представляющей собой систему кабелей, интерфейсов и протоколов.

Передача датчиком полезной информации в шину S6 осуществляется по интерфейсу CAN 2.0B (ISO 11898-1:2003). Протокол обмена информацией удовлетворяет требованиям стандарта **SAE J1939**.

Данные DUT-E CAN могут быть переданы в шину S6 как автоматически (основной режим), так и по запросу.

Шина S6 позволяет подключать до 8 датчиков DUT-E CAN. Для их идентификации на шине используются десятичные адреса с 101 по 108.

Настройка DUT-E CAN в шине S6 осуществляется по интерфейсу K-Line (ISO 14230).

DUT-E CAN формирует и передает сообщения в соответствии с таблицей 3.

Обозначение сообщения	Краткое описание сообщения *			
PGN 62982	Уровень и объем топлива в баке			
PGN 62995	Паспорт DUT-E CAN			
PGN 65276	Приборный дисплей			
PGN 65279	Индикаторы оператора			
PGN 65226	Активные неисправности (DTC's) DUT-E CAN			
* Подробное описание см. в приложении В.				

Таблица 3— Сообщения протокола передачи данных DUT-E CAN

Актуальную версию документа **Описание Протокола передачи данных DUT-E CAN** можно скачать на сайте <u>http://www.technoton.by/</u>.

1.4.6 Совместимость DUT-E с терминалами

Технотон гарантирует полную совместимость и совместную точность измерений DUT-E A5 и DUT-E AF с терминалами СКРТ 45, СКРТ 25, СКРТ 31, а также с бортовой системой контроля и диагностики БСКД Т-60.

Дополнительная информация по применению DUT-E в системе мониторинга транспорта и контроля расхода топлива **СКРТ**[®], а также модельный ряд терминалов системы СКРТ и их технические характеристики представлены на сайте <u>http://www.ckpt.ru/</u>.

Технотон регулярно проводит испытания на совместимость и совместную точность DUT-E с различными моделями терминалов популярных брендов. В таблице 4 приведены модели терминалов, совместимые с DUT-E и обеспечивающие погрешность совместного измерения объема топлива не более ± 1 %.

Nº		Терминал		Аналитическое программное	Модель
	бренд	марка	модель	обеспечение	DUI-E
1			31		
2		СКРТ	25	ORF-MONITOR	DUT-E A5 DUT-E AF
3			45		
4	mapon	MapOn	GBOX6	web сервер mapOn	DUT-E A5 DUT-E AF DUT-E 232
5	EcoTelematics Group	NaviFleet	ET100	NaviFleet	DUT-E A5 DUT-E A10 DUT-E AF DUT-E 232 DUT-E 485
6			702R		DUT-E A5 DUT-E A10 DUT-E AF
7	LOCARUS	Locarus	702X	LocarusInformer	DUT-E 485
8			702S		DUT-E AF
9	AVISET	Naviset	GT-10	GPS-Trace Orange	DUT-E A5 DUT-E A10 DUT-E AF
10		Queclink	GV200	Network Stuff	DUT-E 232
11	Tenenative care with	Сигнал	S-2117	http://cybermonitor.ru/	DUT-E 485
12	≸ирз	ИРЗ-Лира	ST 270	Scout Explorer v3.0	DUT-E A5 DUT-E A10 DUT-E AF
13		Helios Adv+	AMP10353	eInstall	DUT-E A5 DUT-E A10 DUT-E AF

Таблица 4 — Терминалы мониторинга транспорта, совместимые с DUT-E

Продолжение таблицы 4

N₽	Терминал			Аналитическое программное	Модель
	бренд	марка	модель	обеспечение	DUT-E
14			MT-530	Scout Explorer v3.0	DUT-E A5 DUT-E A10 DUT-E AF
15	CHOST	СКАУТ	MT-600 GP PRO	Scout Explorer v3.1	DUT-E A5 DUT-E A10 DUT-E AF DUT-E 485
16	ACE		Fm Light		DUT-E A5
17	BALTIC CAR EQUIPMENT	BCE	Fm Blue	Wialon	DUT-E A10 DUT-E AF
18		VOYAGER	2	RITM-PCN	DUT-E A5 DUT-E A10 DUT-E AF
19	ГЛОСАВ	ГЛОСАВ	БК11-02	ГЛОСАВ	DUT-E 485
20		ОРБИТА	Навигатор.01	Wialon	DUT-E 232 DUT-E 485
21	Ruptela	Ruptela	FM-Pro3	web сервер Trust-Track	DUT-E A5 DUT-E A10 DUT-E AF DUT-E 232
22	К ТехноКом	Автограф	GSM (ГЛОНАСС)	ΠΟ ΑβτοΓΡΑΦ	DUT-E A5 DUT-E A10 DUT-E AF DUT-E 485
			GSM+	GSM+	
23	***		FM1100	TAVL.NET	DUT-E A5 DUT-E A10 DUT-E AF
24	<i>WATELTONIKA</i>	Teltonika	FM4200	TAVL.NET	
25			FM5300	TAVL.NET	DUT-E 232
26	ATrack	Atrack	AT1E	ATrack Server Tool	DUT-E 232
27	<mark>д [«]</mark> GPS сторож	GPS Сторож	GPS Сторож	Программа мониторин- га и транспортной ло- гистики GPS Сторож	DUT-E A5 DUT-E A10 DUT-E AF
28	SkyWave	SkyWave	IDP 690	Wialon	DUT-E 485
29	Спутниковая С Спутниковая С Вязь	SL-C	iSat	Программный модуль LLS для терминала iSat	DUT-E 232 DUT-E 485
30	GPS GALLEOSKY GPS		GPS	Wialon	DUT-E 232
50		S, LILLOSI(1	ГЛОНАСС	Malon	DUT-E 485

Актуальную информацию о совместимости конкретных моделей терминалов и датчиков уровня топлива DUT-E, а также рекомендации по их подключению и настройке можно получить на сайте <u>http://www.technoton.by/</u>.

1.4.7 Взрывозащищенное исполнение DUT-E

DUT-E в специальном взрывозащищенном исполнении **Ex** предназначен для использования во взрывоопасных зонах.

На взрывозащищенный датчик нанесена маркировка взрывозащиты, которая определяет:

- класс взрывозащиты 1ExibIIBT6;
- вид взрывозащиты искробезопасная электрическая цепь «і».

Для обеспечения требований к искробезопасной электрической цепи электрическое подключение взрывозащищенного DUT-E следует осуществлять через внешний блок питания и искрозащиты (приобретается отдельно).

Искробезопасная цепь должна соответствовать параметрам, приведенным в таблице 5.

Таблица 5 — Параметры искробезопасной цепи

Наименование параметра, единица измерения	Значение
Максимальное входное напряжение, В	10
Максимальный входной ток Ii, мА	200
Максимальная внутренняя емкость Сі, мкФ	15,0
Максимальная внутренняя индуктивность Li, мГн	1,188

1.5 Габаритные размеры DUT-E

Габаритные размеры DUT-Е приведены на рисунке 7.

Рисунок 7 — Габаритные размеры DUT-E

^{*} Номинальная длина измерительной части.

2 Установка DUT-E

В данной главе приведены основные рекомендации по установке DUT-E. Более подробная информация по установке DUT-E содержится в документе «Датчик уровня топлива DUT-E. Инструкция по установке».

2.1 Внешний осмотр перед началом работ

Перед началом работ следует осмотреть DUT-E на предмет возможных дефектов, возникших при перевозке, хранении или неаккуратном обращении.

При обнаружении дефектов следует обратиться к поставщику изделия.

DUT-Е может быть установлен как в **отверстие для штатного топливного датчика***, так и в специальное отверстие в баке.

ВНИМАНИЕ! При установке датчика необходимо соблюдать правила техники безопасности при проведении ремонтных работ на автотракторной технике, а также требования техники безопасности, установленные на предприятии.

2.2 Установка на место штатного топливного датчика

ВНИМАНИЕ! Если штатный топливный датчик находится не в геометрическом центре бака, то устанавливать DUT-E на его место не рекомендуется. Установка DUT-E в удалении от геометрического центра бака ведет к значительным колебаниям показаний уровня топлива.

Перед установкой DUT-E необходимо демонтировать штатный топливный датчик и зачистить место его крепления.

В комплект поставки DUT-E входит крепежная пластина. Схема размещения отверстий на баке для ее установки приведена на рисунке 10.

Следует совместить отверстия крепежной пластины и резиновой прокладки с отверстиями в баке.

Для установки можно воспользоваться винтами M5x16, входящими в комплект поставки DUT-E. Головки винтов должны быть полностью утоплены в крепежной пластине (см. рисунок 8).

^{*} Внимательно изучите расположение монтажных отверстий штатного топливного датчика и сравните с чертежом размещения отверстий для крепежной пластины DUT-E.

Рисунок 8 — Крепежная пластина на месте штатного топливного датчика

Для установки DUT-E на место штатного датчика, имеющего установочные размеры **SAE 5 bolt**, следует дополнительно приобрести соответствующую крепежную пластину.

2.3 Установка в специальное отверстие

ВНИМАНИЕ!

1) Перед сверлением отверстия в баке его необходимо опорожнить, демонтировать (при необходимости) и просушить либо залить водой.

2) Перед началом сверления отверстия убедитесь, что под выбранным местом внутри бака нет переборок, мешающих установке DUT-E и исключите соприкосновение измерительной части DUT-E со штангой поплавка штатного датчика уровня топлива TC.

Порядок установки DUT-E следующий:

1) Обозначить место предполагаемой установки. Рекомендуется выбирать место в **геометрическом центре бака** (см. рисунок 9). Такое расположение датчика уменьшит ошибку измерений при колебаниях топлива во время движения TC.

Рисунок 9 — Рекомендуемое место установки DUT-E

2) Провести разметку и сверление отверстий в соответствии с чертежом размещения отверстий для крепежной пластины DUT-E (см. рисунок 10).

БУДЬТЕ ВНИМАТЕЛЬНЫ! На подготовленных отверстиях крепежную пластину можно установить только в одном положении! До разметки и сверления отверстий изучите место предполагаемой установки пластины, чтобы отверстия для пломбирования находились в доступном положении.

Рисунок 10 — Чертеж размещения отверстий для крепежной пластины DUT-E

На подготовленное отверстие поместить резиновую прокладку и крепежную пластину, после чего закрепить винтами M5x16 или винтами-саморезами 3,9x25 из комплекта поставки (см. рисунок 11).

ВНИМАНИЕ! Следует обеспечить электрическую изоляцию корпуса бака TC от корпуса DUT-E. Поэтому при креплении пластины к баку убедитесь, что головки винтов или винтов-саморезов полностью утоплены в крепежной пластине и не перекошены.

Рисунок 11 — Порядок установки крепежной пластины

ВНИМАНИЕ! Для удобства последующего пломбирования датчика следует продеть пломбировочный трос через специальное отверстие в крепежной пластине **до** ее установки на топливный бак.

2.4 Обрезка измерительной части по глубине бака

ВНИМАНИЕ!

Для DUT-E AF, DUT-E 232, DUT-E 485, DUT-E CAN допускается обрезка измерительной части **до любой необходимой длины** с последующей обязательной калибровкой датчика.

Для DUT-E A5, DUT-E A10, DUT-E I допускается обрезка **до 30 % длины** измерительной части без последующей калибровки датчика.

Порядок действий при обрезке DUT-E следующий:

1) Измерить глубину бака от крепежной пластины до его дна;

ВАЖНО! Необходимо обеспечить наличие зазора 25 мм между концом измерительной части и дном топливного бака для:

- обеспечения упругого хода пружины донного упора не менее 10 мм (полное сжатие пружины может привести к повреждению байонетного крепления);
- избежания замыкания трубок измерительной части DUT-E водой или электропроводящим мусором со дна бака.

2) Обрезать измерительную часть DUT-E из расчета расположения среза трубки на расстоянии 25 мм от дна бака;

Рисунок 12 — Обрезка измерительной части DUT-E

ВНИМАНИЕ! Обрезку DUT-E следует производить ножовкой по металлу. Затем края обрезки следует тщательно зачистить и промыть топливом (см. рисунок 12).

3) после обрезки **DUT-E AF, DUT-E 232**, **DUT-E 485** и **DUT-E CAN** необходимо провести калибровку датчика с помощью сервисного комплекта SK DUT-E (см. 3.10.3).

2.5 Наращивание длины

Наращивание длины происходит путем присоединения к измерительной части дополнительных секций датчика DUT-E (см. рисунок 13).

Наращивание DUT-E AF, DUT-E 232, DUT-E 485, DUT-E CAN допускается до длины 6000 мм.

Наращивание DUT-E A5, DUT-E A10, DUT-E I возможно только для восстановления их исходной длины после обрезки.

Наращивание длины позволяет значительно снизить затраты на хранение и перевозку датчиков.

б) Схема крепления к измерительной части датчика

в) Схема крепления двух измерительных секций

Рисунок 13 — Дополнительная секция DUT-E

Дополнительные секции DUT-E можно обрезать до необходимой длины. При обрезке следует руководствоваться рекомендациями, изложенными в 2.4.

Модельная линейка дополнительных секций DUT-E: KDC 250, KDC 500 и KDC 1000 (длина 250, 500 и 1000 мм соответственно).

2.6 Крепление

Для крепления DUT-E необходимо уложить уплотнительное кольцо в выемку крепежной пластины и опустить измерительную часть датчика в отверстие. Затем следует прижать измерительную головку с усилием и зафиксировать ее поворотом по часовой стрелке (см. рисунок 14).

ВНИМАНИЕ! При установке рекомендуется нанести небольшое количество масла или топлива на уплотнительное кольцо крепежной пластины для предотвращения его деформации при фиксировании DUT-E.

Установку следует проводить таким образом, чтобы после фиксации DUT-E пломбировочные отверстия на крепежной пластине и корпусе DUT-E находились друг над другом.

Рисунок 14 — Порядок крепления DUT-E

2.7 Электрическое подключение

ВНИМАНИЕ!

1) При подключении питания DUT-E к бортовой сети TC провода питание «+» и масса «-» подключайте к тем же точкам бортовой сети, к которым подключены соответствующие провода терминала.

2) Перед началом работ по электрическому подключению датчика обратите особое внимание на проверку качества массы ТС. Сопротивление между любой точкой массы ТС и клеммой «-» АКБ либо между клеммами выключателя массы не должно превышать 1 Ом.

3) Жгут DUT-E **настоятельно рекомендуется** укладывать в местах штатной электропроводки TC с обязательной фиксацией его положения кабельными стяжками каждые 50 см (см. рисунок 15).

Корпус DUT-E электрически связан с «-» питания (коричневый провод интерфейсного кабеля). Электрическую изоляцию корпуса DUT-E от корпуса TC (бака) обеспечивают крепежная пластина и крышка измерительной головки, выполненные из диэлектрического пластика.

Рисунок 15 — Укладка жгута DUT-E

Для подключения проводов питания DUT-E рекомендуется использовать **клеммы** (см. рисунок 16 а), а для подключения сигнальных проводов – **коннекторы** (см. рисунок 16 б).

а) клеммы

б) коннекторы

Рисунок 16 — Клеммы и коннекторы для подключения DUT-E

2.7.1 Электрическое подключение DUT-E AF

Электрическое подключение **DUT-E AF** производится в соответствии с цоколевкой разъема и назначением проводов интерфейсного кабеля согласно рисунку 17 и таблице 6.

Рисунок 17— Контакты разъема интерфейсного кабеля DUT-E AF

				-	
Таблина 6 —	Назначение	пповолов	интепфейсного	кабела	DIIT-F AF
гаолица о	nusnu ichne	проводов	μπερφεπείτοι σ	Ruberin	D01 L70

Номер контакта разъема	Маркировка провода	Цвет прово	да*	Назначение провода		
1	VBAT	Оранжевый		Питание «+»		
2	GND	Коричневый		Macca «-»		
3	KLIN	Черный		K-Line (ISO 14230)		
4	T034	Белый		Выходной сигнал (см. 1.4.2)		
* Производитель оставляет за собой право изменять цвета проводов.						

2.7.2 Электрическое подключение DUT-E A5, DUT-E A10, DUT-E I

Электрическое подключение **DUT-E A5**, **DUT-E A10**, **DUT-E I** производится в соответствии с цоколевкой разъема и назначением проводов интерфейсного кабеля согласно рисунку 18 и таблице 7.

Рисунок 18 — Контакты разъема интерфейсного кабеля DUT-E A5, DUT-E A10, DUT-E I

Номер контакта разъема	Маркировка провода	Цвет провода*		Назначение провода	
1	T701/T034	Белый		Выходной сигнал (см. 1.4.3)	
2	GND/T734	Коричневый		Macca «-»	
3	VBAT	Оранжевый		Питание «+»	
* Производитель оставляет за собой право изменять цвета проводов.					

Таблица 7— Назначение проводов интерфейсного кабеля DUT-E A5, DUT-E A10, DUT-E I

2.7.3 Электрическое подключение DUT-E 232 и DUT-E 485

Электрическое подключение **DUT-E 232** и **DUT-E 485** производится в соответствии с цоколевкой разъема и назначением проводов интерфейсного кабеля согласно рисунку 19 и таблице 8.

Рисунок 19 — Контакты разъема интерфейсного кабеля DUT-E 232 и DUT-E 485

Таблица 8 — Назначение проводов ин	терфейсного кабеля DUT-E 232 и DUT-E 485
------------------------------------	--

Номер контакта разъема	Маркировка провода	Цвет провода*		Назначение провода	
1	VBAT	Оранжевый		Питание «+»	
2	GND	Коричневый		Macca «-»	
3	232R/485A	Белый		Принимаемые данные (RS-232) Обмен данными (RS-485)	
4	232T/485B	Красный		Передаваемые данные (RS-232) Обмен данными (RS-485)	

* Производитель оставляет за собой право изменять цвета проводов.

2.7.4 Электрическое подключение DUT-E CAN

Электрическое подключение **DUT-E CAN** к бортовому оборудованию TC производится в соответствии с цоколевкой разъема и назначением проводов интерфейсного кабеля согласно рисунку 20 и таблице 9.

Варианты подключения DUT-E CAN к устройствам регистрации и отображения с указанием необходимых для заказа моделей кабелей датчиков приведены в приложении Б (рисунки Б.1 – Б.4).

Рисунок 20 — Контакты разъема интерфейсного кабеля DUT-E CAN

Таблица 9— Назначение проводов интерфейсного кабеля DUT-E CAN

Номер контакта разъема	Маркировка провода	Цвет провода*		Назначение провода
1	VBAT	Оранжевый		Питание «+»
2	GND	Коричневый		Macca «-»
3	CANH	Голубой		CAN-High (SAE J1939)
4	CANL	Белый		CAN-Low (SAE J1939)
5	KLIN	Черный		K-Line (ISO 14230)

* Производитель оставляет за собой право изменять цвета проводов.

ВНИМАНИЕ! При подключении DUT-E в первую очередь обращайте внимание на маркировку проводов интерфейсного кабеля.

2.8 Контроль двух и более баков

2.8.1 Суммирование показаний DUT-E 232

Для измерения суммарного объема топлива двух и более баков TC, совместно с датчиками DUT-E 232 применяется сумматор DUT-E SUM 232 (см. рисунок 21), разработанный СП Технотон.

ВНИМАНИЕ!

1 Сумматор работает только с DUT-E 232, версия прошивки которых не ниже 3.0.

2 Во внутреннюю память каждого из подключаемых к сумматору датчиков должна быть записана тарировочная таблица измеряемого топливного бака (см. 3.10.7).

Рисунок 21 — Внешний вид сумматора DUT-E SUM 232

Выходной сигнал DUT-E SUM 232 содержит объем топлива (в литрах), который является результатом сложения объемов, измеренных датчиками, подключенными к входам **IN** и **IN/OUT** сумматора.

Электрическое подключение сумматоров осуществляется по схемам, приведенным на рисунке 22, в соответствии с назначением проводов согласно таблице 10.

Для измерения суммарного объема топлива двух баков с установленными DUT-E 232, подключение к терминалу осуществляется согласно рисунку 22 а).

Когда требуется измерить объем топлива в трех и более баках с установленными DUT-E 232, следует применять каскадное подключение сумматоров согласно рисунку 22 б).

Для подключения сигнальных проводов рекомендуется использовать коннекторы (см. 2.7)

Номер провода	Маркировка провода	Цвет провода*		Назначение	
1	VBAT	Оранжевый		Питание «+»	
2	GND	Коричневый		Macca «-»	
3	232R	Белый		Принимаемые данные (RS-232)	
4	232T	Красный		Передаваемые данные (RS-232)	
* Производитель оставляет за собой право изменять цвета проводов.					

Таблица 10 —	Назначение	проводов	сумматора	DUT-E SUM 232
--------------	------------	----------	-----------	---------------

Для получения корректных данных суммирования следует с помощью ПО Service DUT-E настроить DUT-E 232. Порядок настройки следующий (см. 3.10.4, 3.10.6)):

1) Для передачи данных **по запросу** следует установить следующие состояния параметров для **всех** датчиков:

- в подменю Режим работы для параметра Режим автоматической выдачи параметров выбрать из выпадающего списка состояние Выкл.;
- в подменю **Выходное сообщение** параметр **Выходное сообщение** установить в состояние **Объем топлива (л)**.

2) Для передачи данных в **автоматическом** режиме следует установить следующие состояния и значения параметров датчиков:

- в подменю **Выходное сообщение** для **всех** датчиков параметр **Выходное сообщение** установить в состояние **Объем топлива** (л);
- в подменю Режим работы для датчика N₁ параметру Режим автоматической выдачи параметров выбрать из выпадающего списка состояние HEX, параметру Интервал автоматической выдачи параметров (с) установить значение 1;
- в подменю Режим работы для датчиков от N₂ до N_(n-1) для параметра Режим автоматической выдачи параметров выбрать из выпадающего списка состояние Выкл.;
- в подменю Режим работы для датчика N_n (последний) для параметра Режим автоматической выдачи параметров выбрать из выпадающего списка состояние HEX\ASCII\ASCII EXT, параметру Интервал автоматической выдачи параметров (с) установить любое необходимое для работы терминала значение.

Примечание — Для датчика **N**_n (последнего) рекомендуется устанавливать значение интервала автоматической выдачи параметров равным не менее 8 с.

6) Схема подключения трех и более DUT-E 232 (каскадирование сумматоров)

Рисунок 22 — Схемы подключения сумматора DUT-E SUM 232

2.8.2 Суммирование показаний DUT-E AF

Для измерения суммарного объема топлива в двух и более баках, совместно с датчиками DUT-E AF применяется сумматор DUT-E SUM AF (см. рисунок 23), разработанное СП Технотон.

ВНИМАНИЕ!

1 Сумматор работает только с DUT-E AF, версия прошивки которых не ниже 3.5.

2 Во внутреннюю память каждого из подключаемых к сумматору датчиков должна быть записана тарировочная таблица измеряемого топливного бака (см. 3.10.7).

3 Суммирование данных обеспечивается как для аналогового, так и для частотного выходных сигналов DUT-E AF.

Рисунок 23 — Внешний вид сумматора DUT-E SUM AF

Выходной сигнал DUT-E SUM AF содержит объем топлива (в литрах), который является результатом сложения объемов, измеренных датчиками, подключенными к входам **IN** и **IN/OUT** сумматора.

Электрическое подключение сумматоров осуществляется по схемам, приведенным на рисунке 24, в соответствии с назначением проводов согласно таблице 11.

Для измерения суммарного объема топлива двух баков с установленными DUT-E AF, подключение к терминалу осуществляется согласно рисунку 24 а).

Когда требуется измерить объем топлива в трех и более баках с установленными DUT-E AF, следует применять каскадное подключение сумматоров согласно рисунку 24 б).

Для подключения сигнальных проводов рекомендуется использовать коннекторы (см. 2.7)

а) Схема подключения двух DUT-E AF

6) Схема подключения трех и более DUT-E AF (каскадирование сумматоров)

Рисунок 24 — Схемы подключения сумматора DUT-E SUM AF

Таблица 11 — Назначение проводов с	сумматора DUT-E SUM AF
------------------------------------	------------------------

Номер провода	Маркировка провода	Цвет провода*		Назначение	
1	VBAT	Оранжевый		Питание «+»	
2	GND	Коричневый		Macca «-»	
3	KLIN	Черный		K-Line (ISO 14230)	
* Производитель оставляет за собой право изменять цвета проводов.					

Для получения корректных данных суммирования следует в подменю **Аналоговый выход** ПО Service DUT-E (версия не ниже 3.22) настроить DUT-E AF. Порядок настройки следующий (см. 3.10.4):

 при суммировании данных DUT-E AF в режиме аналогового выходного сигнала для всех датчиков выбрать из первого выпадающего списка Тип выходного сигнала параметр U. В соответствующих полях задать минимальный (U_{min}, B) и максимальный (U_{max}, B) уровни выходного сигнала.

ВНИМАНИЕ! При суммировании данных DUT-E AF в режиме частотного выходного сигнала необходимо для датчика **N**_n выбрать параметр **F** из первого выпадающего списка Тип выходного сигнала. Для датчиков от **N**₁ до **N**_{n-1} выбирается параметр **U**.

- для датчика N_n задать в подменю Настройки-Режим работы старший сетевой адрес. Для более быстрой передачи данных сетевые адреса датчиков от N₁ до N_{n-1} необходимо задать строго по порядку, исключая пропуски (см. рисунок 24).
- для датчика N_n выбрать из второго выпадающего списка Тип выходного сигнала режим работы Сумма. Для датчиков от N₁ до N_{n-1} выбирается произвольный режим работы — Объем или Уровень.
- после настройки датчиков следует выйти из ПО Service DUT-E, поскольку дальнейшая работа ПО блокирует обмен данными между DUT-E AF.

2.8.3 Суммирование показаний DUT-E CAN

Для измерения суммарного объема топлива нескольких баков, совместно с датчиками DUT-E CAN, следует использовать интерфейсы данных автомобиля MasterCAN C 232/485 и MasterCAN V-GATE.

Схема подключения интерфейсов MasterCAN для суммирования показаний двух и более DUT-E CAN с указанием необходимых для заказа моделей кабелей приведена в приложении Г (рисунок Г.1).

Бортовая шина S6 позволяет подключать до 8 датчиков DUT-E CAN. Для их идентификации на шине следует использовать десятичные адреса с 101 по 108.

Во внутреннюю память каждого из подключаемых к шине S6 датчиков DUT-E CAN должна быть предварительно записана тарировочная таблица измеряемого топливного бака (см. 3.10.7).

Более подробная информация по использованию интерфейсов данных автомобиля MasterCAN C 232/485 и MasterCAN V-GATE содержится в документе **«Интерфейс данных автомобиля MasterCAN. Руководство по эксплуатации»**
2.9 Пломбирование

Для исключения хищения топлива или несанкционированного вмешательства в работу DUT-E, необходимо опломбировать датчик и место электрического подключения разъема интерфейсного кабеля датчика при помощи входящих в комплект поставки пломбировочных канатов и одноразовых пластиковых пломб (см. рисунок 25).

ВНИМАНИЕ! Пломбирование места электрического подключения DUT-E A10, DUT-E 232, DUT-E 485 и DUT-E CAN следует производить после калибровки и настройки датчиков (см. 3).

Для пломбирования следует продеть пломбировочный канат через специальные отверстия крепежной пластины и корпуса DUT-E, после чего свободные концы каната пропустить через два отверстия в центре пломбы. При защелкивании пломбы произойдет фиксация каната. Разъединение пломбы без нарушения ее целостности невозможно.

Рисунок 25 — Одноразовая пластиковая пломба и пломбировочный канат

ВНИМАНИЕ! Пломбировочный канат не должен касаться бака!

3 Настройка датчиков с помощью сервисного комплекта

Для корректной работы DUT-E AF, DUT-E 232, DUT-E 485 и DUT-E CAN требуется их калибровка на минимальный и максимальный уровни измерения топлива, а также настройка датчиков под конкретные условия эксплуатации и требования устройств регистрации и отображения.

Калибровка и настройка датчиков осуществляется с помощью приобретаемого отдельно сервисного комплекта SK DUT-E.

ВНИМАНИЕ! Калибровка и настройка DUT-E A5, DUT-E A10 и DUT-E I не требуется.

3.1 Назначение SK DUT-E

Сервисный комплект SK DUT-E предназначен для настройки датчиков DUT-E AF, DUT-E 232, DUT-E 485, DUT-E CAN И обмена данными между ПК и DUT-E.

Для работы с SK DUT-E на ПК должно быть установлено специальное программное обеспечение (далее — ПО) Service DUT-E, входящее в состав сервисного комплекта.

Актуальную версию ПО Service DUT-Е можно скачать на сайте www.technoton.by .

ПО Service DUT-Е позволяет:

- просматривать и изменять текущие настройки датчика;
- калибровать датчик;
- тарировать топливный бак;
- сохранять профиль настроек датчика в виде файла на ПК;
- загружать сохраненный ранее профиль настроек из ПК в датчик;
- контролировать выходные данные датчика;
- проводить диагностику датчика;
- обновлять встроенное ПО датчика.

3.2 Требования к ПК

Для работы ПО Service DUT-Е необходим IBM-совместимый ПК (стационарный или ноутбук), удовлетворяющий следующим требованиям:

- процессор Intel или AMD с тактовой частотой не менее 800 МГц;
- ОЗУ не менее 256 Мб (рекомендуется 512 Мб и более);
- наличие USB-порта;
- наличие CD-ROM или DVD-ROM;
- операционная система Windows XP/Windows Vista/Windows 7/Windows 8.

3.3 Состав сервисного комплекта

3.3.1 Внешний вид и комплектность

Комплект поставки SK DUT-Е представлен на рисунке 26.

- 1 универсальный сервисный адаптер;
- 2 карточка лицензии на использование ПО Service DUT-E;
- 3 компакт-диск «Программное обеспечение Driver USB»;
- 4 компакт-диск «Программное обеспечение Service DUT-E»;
- **5** паспорт SK DUT-E;
- 6 кабель USB A-B;
- 7 сервисный кабель RS-485;
- 8 сервисный кабель RS-232;
- 9 сервисный кабель AF;
- 10 сервисный кабель САN.

Рисунок 26 — Комплект поставки SK DUT-E

3.3.2 Универсальный сервисный адаптер

Универсальный сервисный адаптер (далее — адаптер) предназначен для обеспечения обмена данными между DUT-E и ПК.

Внешний вид адаптера представлен на рисунке 27.

- **1** разъём RS-232/ISO 14230/RS-485 для подключения DUT-E;
- 2 жёлтый светодиодный индикатор ТХ передачи данных в DUT-E;
- 3 зелёный светодиодный индикатор RX приёма данных от DUT-E;
- **4** красный светодиодный индикатор ON подключения питания;
- **5** разъём USB В для подключения ПК.

Рисунок 27 — Внешний вид адаптера

3.3.3 Кабель USB А-В

Кабель USB А-В предназначен для подключения адаптера к ПК.

Внешний вид разъемов USB A и USB В кабеля USB А-В приведен на рисунке 28.

Рисунок 28 — Разъемы кабеля USB А-В

3.3.4 Сервисный кабель RS-485

Сервисный кабель RS-485 предназначен для подключения адаптера к DUT-E 485. Назначение контактов разъемов сервисного кабеля RS-485 приведено в таблице 12.

Таблица 12 — Назначение контактов разъемов сервисного кабеля RS-485

Вид	Номер	п	Провод			нал
разъема	кон- такта	Маркировка		Цвет	Наименование	Тип
	6	GND		Коричневый	Macca «-»	-
	7	GND		Коричневый	Macca «-»	-
	10	485B		Красный	Передаваемые данные	Цифровой, интерфейс RS-485
	11	SEL1		Коричневый	Выбор RS-485	Дискретный
	14	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 50 В
	15	485A		Белый	Принимаемые данные	Цифровой, интерфейс RS-485
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 50 В
	2	GND		Коричневый	Macca «-»	-
- 2	3	485A		Белый	Принимаемые данные	Цифровой, интерфейс RS-485
	4	485B		Красный	Передаваемые данные	Цифровой, интерфейс RS-485

3.3.5 Сервисный кабель RS-232

Сервисный кабель RS-232 предназначен для подключения адаптера к DUT-E 232. Назначение контактов разъемов сервисного кабеля RS-232 приведено в таблице 13.

Таблица 13 — Назначение контактов разъемов сервисного кабеля RS-232

Вид	Номер	п	ровод		Сигнал	
разъема	такта	Маркировка		Цвет	Наименование	Тип
	4	232T		Красный	Передавае- мые данные	Цифровой, интерфейс RS-232
	5	232R		Белый	Принимаемые данные	Цифровой, интерфейс RS-232
	6	GND		Коричневый	Macca «-»	-
	14	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 50 В
2 4 E	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 50 В
	2	GND		Коричневый	Macca «-»	-
- 2	3	232R		Белый	Принимаемые данные	Цифровой, интерфейс RS-232
	4	232T		Красный	Передавае- мые данные	Цифровой, интерфейс RS-232

3.3.6 Сервисный кабель АF

Сервисный кабель AF предназначен для подключения адаптера к DUT-E AF. Назначение контактов разъемов сервисного кабеля AF приведено в таблице 14.

Таблица 14 —	Назначение	контактов	разъемов	сервисного	кабеля AF
			p a c = c c =	000000000000	

Вид	Номер	п	ровод		Сигнал	
разъема	кон- такта	Маркировка		Цвет	Наименование	Тип
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
	3	KLIN		Черный	K-Line	Цифровой, стандарт ISO14230
	6	GND		Коричневый	Macca «-»	-
	7	GND		Коричневый	Macca «-»	-
	12	SEL2		Коричневый	Выбор K-Line	Дискретный
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
	2	GND		Коричневый	Macca «-»	-
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
	2	GND		Коричневый	Macca «-»	-
	3	KLIN		Черный	K-Line	Цифровой, стандарт ISO14230
	4	T034		Белый	Уровень топлива	Аналоговый, напряжение от 0 до 9 В

3.3.7 Сервисный кабель CAN

Сервисный кабель CAN предназначен для подключения адаптера к DUT-E CAN. Назначение контактов разъемов сервисного кабеля CAN приведено в таблице 15.

Таблица	15 —	Назначение	контактов	разъемов	сервисного	кабеля CAN
				p	000000000000	

Вид	Номер	п	овод		Сигнал	
разъема	такта	Маркировка		Цвет	Наименование	Тип
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
	3	KLIN		Черный	K-Line	Цифровой, стандарт ISO14230
	6	GND		Коричневый	Macca «-»	-
	7	GND		Коричневый	Macca «-»	-
	12	SEL2		Коричневый	Выбор K-Line	Дискретный
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
3 4 5	2	GND		Коричневый	Macca «-»	-
	1	VBAT		Оранжевый	Напряжение питания	Аналоговый, напряжение от 0 до 32 В
	2	GND		Коричневый	Macca «-»	-
4	5	KLIN		Черный	K-Line	Цифровой, стандарт ISO14230

3.4 Установка ПО

Перед началом работы с SK DUT-Е необходимо установить на ПК следующее ПО, входящее в комплект поставки:

- драйвер USB для создания виртуального порта СОМ (компакт-диск «Программное обеспечение Driver USB»);
- ПО Service DUT-E (компакт-диск «Программное обеспечение Service DUT-E»).

3.4.1 Установка драйвера USB

ВНИМАНИЕ! Без предварительной установки драйвера USB работа с SK DUT-E невозможна.

CD-ROM Вставьте в (DVD-ROM) ΠК компакт-диск «Программное обеспечение Driver **USB**» ИЗ комплекта поставки SK DUT-E запустите файл и CP210x VCP Win XP S2K3 Vista 7.exe.

Появится окно Welcome to the InstallShield Wizard, вид которого представлен на рисунке 29.

Рисунок 29 — Окно Welcome to the InstallShield Wizard

После нажатия кнопки и начнется первый этап установки драйвера USB на ПК, в процессе которого необходимо следовать всем предписаниям программы-установщика.

Процесс установки отображается в окне Setup Status (см. рисунок 30).

Setup Status			
The InstallShield W XP/2003 Server/V	fizard is installing Silicon La ista/7 v6.5	aboratories CP210x VCF	Privers for Windows
Installing			
c:\Windows_XF	_\$2K3_Vista_7\x86\\/df	Colnstaller01009.dll	
talShield			
independent of the second			

Рисунок 30 — Окно Setup Status

По завершении первого этапа установки, в окне InstallShield Wizard Complete (см. рисунок 31) следует выбрать опцию Launch the CP210xVCP для запуска установщика драйвера и затем нажать кнопку Finish.

Silicon Laboratories CP210x VC	P Drivers for Windows XP/2003 Server/Vista/7 - InstallShield		
	InstallShield Wizard Complete The InstallShield Wizard has successfully copied the Silicon Laboratories CP210x VCP Drivers for Windows XP/2003 Server/Vi3z/V 45 to go unhad drive. The driver installer listed below should be executed in order to install drivers or update an existing driver. ✓ Launch the CP210x VCP Driver Installer. Click Finish to complete the Silicon Laboratories CP210x VCP Drivers for Windows XP/2003 Server/Vista/7 v6.5 setup.		
< Back Finish Cancel			

Рисунок 31 — Окно InstallShield Wizard Complete

В появившемся окне Silicon Laboratories CP210x USB to UART Bridge Driver Installer следует нажать кнопку после чего, начнется завершающий этап установки драйвера USB (см рисунок 32).

Silicon Laboratories CP210x VCP Drivers for Windows XP/2003 Server/Vista/7 - InstallShield						
		S	InstallShield	l Wizard Comp	olete	
	🖟 Silico	n Laboratories C	P210x USB to U	ART Bridge Driv	/er Installer	×
4	易	Silicon Laborator Silicon Laborator	ies ies CP210x USB	to UART Bridge		
					Driver Version	6.5
				Install	Cance	21
				< Back	Finish	Cancel

Рисунок 32 — Окно установки Silicon Laboratories CP210x USB to UART Bridge Driver Installer

По окончании завершающего этапа, появится окно извещения об успешном результате процесса установки драйвера USB (см. рисунок 33).

Success	—
i	Installation completed successfully
	ОК

Рисунок 33 — Окно извещения о результате установки

3.4.2 Установка ПО Service DUT-E

Для установки ПО Service DUT-E вставьте в CD-ROM (DVD-ROM) ПК компакт-диск «Программное обеспечение Service DUT-E» из комплекта поставки SK DUT-E и запустите установочный файл Setup Service DUT-E vX.XX.exe.

Примечание — Цифры X.XX в имени установочного файла указывают номер версии ПО Service DUT-E. В настоящем документе приведено описание установки для версии 3.22.

Из выпадающего списка выберите один из предложенных языков программы-установщика (см. рисунок 34).

Рисунок 34 — Выбор языка программы-установщика

После нажатия кнопки в окне Мастера установки (см. рисунок 35) DUT-E Service ПΚ, начнется установка ΠО на в процессе которой необходимо следовать всем предписаниям программы.

🕞 Setup Service DUT-E 3.22	
	Вас приветствует Мастер установки Service DUT-E
	Эта программа установит Service DUT-E на ваш компьютер. Перед началом установки рекомендуется закрыть все запущеные подпожения. Это позолит порграмме установки обновить системые файлы без перезагрузки. Нажните Далее чтобы продолжить.
	Далее > Отмена

Рисунок 35 — Окно Мастер установки Service DUT-E

Процесс копирования файлов ПО Service DUT-E отображается в окне Инсталляция (см. рисунок 36).

Рисунок 36 — Окно Инсталляция

После успешной установки ПО Service DUT-E, ПК готов для работы с сервисным комплектом SK DUT-E (см. рисунок 37).

🕞 Setup Service DUT-E 3.22	
	Установка Service DUT-E успешно завершена
	Установка Service DUT-E выполнена. Нажните Готово для выхода из програмны установки.
	🗹 Запустить Service DUT-E
	Готово Отмена

Рисунок 37 — Окно завершения процесса установки ПО

3.5 Подключение SK DUT-E

3.5.1 Внешний осмотр перед подключением

Перед первым подключением сервисного комплекта SK DUT-E следует провести его внешний осмотр на предмет выявления дефектов, возникших при перевозке, хранении или неаккуратном обращении:

- видимых повреждений разъемов и корпуса адаптера;
- повреждений разъемов и изоляционной оболочки сервисных жгутов и кабеля USB А-В из комплекта поставки.

При обнаружении дефектов следует обратиться к поставщику изделия.

3.5.2 Эксплуатационные ограничения

При подключении SK DUT-E к датчику, установленному на TC, следует исключить:

- попадание топливно-смазочных материалов и влаги на контакты разъемов адаптера, сервисных жгутов и кабеля USB A-B;
- возможность повреждения адаптера, изоляции сервисных кабелей и кабеля USB A-В вращающимися и нагревающимися элементами двигателя.

ВНИМАНИЕ! Для исключения сбоев при работе SK DUT-E по линии связи между DUT-E и ПК, необходимо убедиться, что вблизи рабочего места отсутствуют источники электромагнитных помех (работающие электродвигатели, мощные трансформаторы и коммутационное оборудование, сварочное оборудование, высоковольтные линии и т.п.).

3.5.3 Подключение DUT-E к ПК

ВНИМАНИЕ! Перед началом работ по подключению DUT-E к ПК необходимо обесточить электрические цепи TC. Для этого следует воспользоваться выключателем аккумуляторной батареи (АКБ) или снять контактные клеммы с АКБ.

Подключение датчиков DUT-E для их настройки к ПК осуществляется в соответствии со схемами подключения, приведенными на рисунке 38.

Необходимо выполнить следующую последовательность действий:

- 1) Подключить разъем интерфейсного кабеля DUT-E к разъему RS-232/ISO 14230/RS-485 адаптера. Для подключения датчиков следует использовать сервисные кабели, соответствующе исполнению DUT-E (см. 3.3.4 3.3.7).
- 2) Подключить адаптер кабелем USB А-В к свободному USB-порту ПК *.
- 3) Подключить провода питания к бортовой сети ТС либо к источнику питания.

Примечания

1 При настройке DUT-E 232 и DUT-E 485 питание осуществляется через кабель USB A-B от USB-порта ПК.

2 При настройке DUT-E AF и DUT-E CAN необходимо подключение дополнительного питания от АКБ либо от источника питания (см. рисунки 38 а) и 38 б) соответственно).

4) Включить питание (АКБ).

^{*} Подключение адаптера к USB-порту ПК допускается производить как до, так и после включения питания (АКБ) и запуска ПО Service DUT-E.

Рисунок 38 — Схемы подключения SK DUT-E

3.6 Проверка функционирования

В случае, если установка ПО и подключение SK DUT-E были произведены корректно, Windows автоматически определяет подключаемый к порту USB ПК адаптер как USB-устройство и выполняет для него включение драйвера виртуального COM-порта. Данный виртуальный COM-порт отображается в списке Порты Диспетчера устройств Windows (см. рисунок 39).

Device Manager	
File Action View Help	
Source Construction S	

Рисунок 39 — Виртуальный СОМ-порт в Диспетчере устройств

SK DUT-E готов к работе с момента включения питания (от бортовой сети TC, либо от порта USB ПК).

ВНИМАНИЕ! При работе с ПО Service DUT-Е рекомендуется подключать адаптер всегда к одному и тому же USB-разъёму ПК.

Значения сигналов светодиодных индикаторов, расположенных на корпусе адаптера, должны соответствовать таблице 16.

Светс	одиодный индикатор	
Обозначение	Состояние индикатора и цвет сигнала	Значение светового сигнала
		Питание от бортовой сети
		Питание от USB
ON	Нет сигнала	Питание отключено (значение напряжения питания ниже минимально допустимого)
DY		Идет прием данных от DUT-E
KĂ	Нет сигнала	Нет приема данных от DUT-E
		Идет передача данных в DUT-E
	Нет сигнала	Нет передачи данных в DUT-E

3.7 Запуск ПО

ПО запускается ярлыком ^{Service DUT-E}, созданным в процессе установки программы.

До подключения адаптера к порту USB ПК окно ПО имеет вид согласно рисунку 40. В левой верхней части окна ПО отображается статус Проводное соединение – «Не подключен», Версия прошивки – «Не известна», Серийный номер – «Не известен».

Cepsac DUT-E v.3.22				?×
Проводное соединение	Не подключен		ADDR 101	DUT-E
Версия прошивки	Не известна	Перепрошить		
Серийный номер	Не известен			
Загрузить профиль	Сохранить профиль	Печать профиля		** == ==
				4

Рисунок 40 — Окно ПО при отсутствии связи DUT-E с ПК

При подключении адаптера к порту USB ПК, ПО автоматически изменит статус проводного соединения на «Подключен», отобразит версию прошивки и серийный номер датчика, номер виртуального СОМ-порта, а также скорость передачи данных по RS-232, RS-485 либо K-line (см. рисунок 41). Также будут наблюдаться сигналы светодиодных индикаторов адаптера согласно таблице 16.

🔀 Сервяс DUT-Е v.3.22			<u> 1 ×</u>
Проводное соединение	Подключен	COM 13 9600 bit/s ADDR 101	DUT-E
Версия прошивки	3.5	Перепрошить	
Серийный нокер	071001300004		
Загрузить профиль	Сохранить профиль	Пенать, профиля	₩ 💻 🚃
			114

Рисунок 41 — Окно ПО после установления связи DUT-E с ПК

Для подключения датчиков DUT-E CAN и DUT-E AF к ПК, необходимо предварительно выбрать сетевой адрес датчика из в выпадающего списка ADDR (см. рисунок 42).

🔀 Сервис DUT-E v.3.22			<u>?×</u>
Проводное соединение	Подключен	COM 13 9600 bit/s ADDR: 101	DUT-S
Версия прошивки	3.5	Перепрошить 102	
Серийный нонер	071001300004	103 104 105	
Загрузить профиль	Сохранить профиль	Печать профиля 106 107 108	Ж 💻 🚍

Рисунок 42 — Выбор сетевого адреса при подключении DUT-E CAN и DUT-E AF

3.8 Интерфейс ПО, предварительная настройка

Интерфейс ПО Service DUT-E состоит из Горизонтального меню, Вертикального меню, а также Зоны состояния подключения и Зоны информации и настройки (см. рисунок 43).

Зона состояния	🖉 Сервяс DUT-Е v.3.22	1×	
подключения	Проводное соединение Подключен Версия прошивки 3.5 Серийный нонер 071001300004	COM 13 9600 bb/s ADDR 101 V	Горизонтальное меню
Вертикальное меню	Загругал пофона Таспорт Настропация Настропация Настропация Настропация Тармокоррекция Таблица такрован Интеррейс Аналотовий виход Диагностика	Модель датчика DUT-E AF Серийний нокер 071001-30004 Версия прошивия 3.5	Зона информации и настройки

Рисунок 43 — Интерфейс ПО Service DUT-E

В левой верхней части окна ПО Service DUT-E расположена **Зона состояния подключения**, в которой отображается информация о текущем состоянии подключения датчика к ПК (Не подключен/Подключен), версии прошивки и серийном номере подключенного DUT-E. Кроме того здесь расположены: выпадающий список для выбора сетевого адреса (только при настройке DUT-E AF, DUT-E CAN) и кнопка для обновления прошивки датчика.

Расположенное под Зоной состояния подключения Горизонтальное меню обеспечивает:

- выбор операций с профилем (загрузка, сохранение и печать профиля);
- выбор языка интерфейса.

Вертикальное меню — расположено в левой части окна ПО Service DUT-E и используется для выбора элементов профиля датчика, которые отображаются в **Зоне информации и настройки** (правая часть окна ПО Service DUT-E). Кроме того, Вертикальное меню позволяет проводить диагностику датчика и тарировку топливного бака, в который устанавливается DUT-E.

Кнопка 🔟, расположенная в верхнем правом углу окна ПО, служит для вызова справки.

Предварительная настройка ПО заключается в выборе языка интерфейса. Для чего следует нажать одну из трех стилизованных кнопок с изображением национальных флагов стран, соответствующих языку интерфейса (верхняя правая часть окна ПО).

Нажатием кнопок 🕅 и 🧮 выбирается соответственно английский либо немецкий язык, а нажатием кнопки 🔲 — русский язык интерфейса.

3.9 Профиль DUT-E

ПО Service DUT-Е предназначено для работы с профилем DUT-Е (далее — профиль).

Под профилем понимается совокупность паспортных данных, параметров и настроек DUT-E.

ПО позволяет работать с профилем, как при подключении DUT-E к ПК, так и в автономном режиме. При работе в автономном режиме возможна загрузка и редактирование ранее сохраненных профилей.

ВНИМАНИЕ! Настоящее описание работы ПО Service DUT-E составлено для датчика, подключенного к ПК. При работе в автономном режиме некоторые параметры и функции ПО недоступны.

Профиль может быть либо сохранен в виде файла на диске ПК, либо загружен в память DUT-E, либо, при необходимости, распечатан на принтере.

3.9.1 Команда Загрузить профиль

По нажатию кнопки Загрузить профиль, в выпадающем меню доступны следующие варианты загрузки профиля датчика (см. рисунок 44):

- с диска;
- по умолчанию;
- из датчика.

Cepвиc DUT-E v.3.22			?
Іроводное соединение	Подключен	COM 13 9600 bit/s ADDR 101	DUT-E
Версия прошивки	3.5	Перепрошить	0010
Серийный номер	071001300004		
Загрузить Сдиока	ранить профиль	Пенать профиля	
По унолчанию			
Из датчика			

Рисунок 44 — Загрузка профиля

При выборе загрузки **С диска** открывается файл профиля, сохраненный ранее на жестком диске ПК либо съемном носителе.

При выборе загрузки **По умолчанию** открывается файл профиля со стандартными настройками DUT-E, позволяющими ознакомиться с работой ПО без подключения датчика.

При выборе загрузки **Из датчика** открывается файл профиля из памяти подключенного к ПК датчика.

ВНИМАНИЕ! Файл профиля DUT-Е имеет расширение *.dpf.

3.9.2 Команда Сохранить профиль

При завершении работы, по нажатию кнопки сохранить профиль, из выпадающего меню можно выбрать следующие варианты сохранения профиля датчика (см. рисунок 45):

- в файл;
- в датчик.

🔀 Сервис DUT-E v.3.22			<u>? ×</u>
Проводное соединение	Подключен	COM 13 9600 bit/s ADDR 101	DUT-E
Версия прошивки	3.5	Перепрошить	
Серийный номер	071001300004		
Загрузить профиль	Сохранит В файл	Печать профиля	** == ==
Паспорт	Вдатчик		
Авторизация			

а) выбор варианта сохранения профиля

б) сообщение о сохранении профиля

OK

При сохранении профиля датчика **В файл** выберите в открывшемся окне место на диске и присвойте имя файлу профиля. В дальнейшем вы можете использовать сохраненный профиль для его загрузки в другие подключаемые аналогичные DUT-E.

При сохранении профиля **В датчик** все изменения настроек DUT-E будут сохранены в его памяти.

Если авторизация пользователя (см. 3.10.2) не была произведена, то при сохранении профиля в датчик либо при проведении его калибровки, ПО автоматически запрашивает пароль датчика (см. рисунок 46).

Рисунок 46 — Запрос пароля

Примечание — Пароль датчика по умолчанию — **1111**. Он указан в прилагаемом к паспорту вкладыше с заводскими настройками DUT-E.

3.9.3 Команда Печать профиля

Данная команда конвертирует в формат HTML-документа открытый профиль датчика.

После нажатия кнопки печать профиля, в открывшемся окне укажите место на диске для сохранения файла с расширением ***.html**, содержащего данные профиля датчика. Этот файл затем можно открыть для просмотра, либо распечатать на принтере. Пример распечатки профиля DUT-E приведен в приложении Д (рисунок Д.1).

ВНИМАНИЕ! Рекомендуется подшивать распечатки профиля к паспорту DUT-E, для отслеживания изменений в настройках датчика.

3.10 Описание вертикального меню

3.10.1 Паспорт

После загрузки профиля из датчика, подменю **Паспорт** отображает следующую информацию о подключенном DUT-E (см. рисунок 47):

- модель датчика;
- серийный номер;
- версия прошивки.

Вышеуказанную информацию пользователь редактировать не может. Кроме того, информация о серийном номере и версии прошивки дублируется в Зоне состояния подключения ПО Service DUT-E.

🔀 Cepsac DUT-E v.3.22				<u>?</u> ×
Проводное соединение	Подключен	COM 13 9600 bit/s A	DDR: 101	DUT-E
Версия прошивки	3.5	Перепрошить		
Серийный номер	071001300004			
Загрузить профиль	Сохранить профиль	Печать профиля		** ==
Пастори Настройки Калифовика Калифовика Реконе работы Тафика, тариооренци Тафика, тариоренци Тафика, тариоренци Аналогевий виход Диагностика		Модель датчика Серийный номер Версия прошивки	DUT-E AF 071001-300004 3.5	

Рисунок 47 — Подменю Паспорт

3.10.2 Авторизация

Подменю Авторизация обеспечивает доступ к изменению настроек DUT-E.

Пользователей ПО Service DUT-Е можно условно разделить на две группы:

- гость может просматривать настройки DUT-E, но не имеет права их редактировать;
- специалист может просматривать и редактировать настройки DUT-E.

Неавторизованный пользователь при работе с ПО имеет права гостя.

Для получения прав специалиста пользователю необходимо авторизоваться, т.е. ввести текущий пароль и нажать кнопку **Выполниты** (см. рисунок 48).

Cepsuc DUT-E v.3.22						?	×
Проводное соединение	Подключен	COM 13 9	600 bit/s	ADDR 101	•	DUT-E	
Версия прошивки	3.5	Перепре	ошить				•
Серийный номер	071001300004						
Загрузить профиль Сох	ранить профиль	Печать пр	рофиля			XK 💻 🚃	
Пакторт Настройки Калифока Рекин работи Терносорекция Терносорекция Таблица тарировки Интерфей Аналоговий выпод Диалностика	Текущий	пароль: [пароль: [Вы	1111			-	

б) сообщение об успешной авторизации

в) сообщение при вводе
 неверного текущего пароля

Рисунок 48 — Авторизация пользователя

При необходимости изменить текущий пароль, следует после его ввода поставить галочку рядом с полем нового пароля, ввести новый пароль и нажать кнопку (см. рисунок 49).

Сервис DUT-E v.3.22					2)
роводное соединение	Подключен	COM 13 9600 bit/s	ADDR: 101]	I IT-E
Версия прошивки	3.5	Перепрошить		_	
Серийный номер	071001300004				
Загрузить профиль Сох	ранить профиль	Печать профиля			
іаспорт наторязьня Каторовия Калюбрека Резин работа Тернокоронция Табінца тарировки Интерфей Інтерфей Інтерфей Інаностовий ваход	Пользова	ітель авторизован пароль: 1234 Выполнять]		

а) ввод нового пароля

б) подтверждение установки нового пароля

Рисунок 49 — Изменение текущего пароля

ВНИМАНИЕ! При утере текущего пароля DUT-E следует обратиться в службу технической поддержки Технотон по e-mail <u>support@technoton.by</u>.

Требования к форме запроса на восстановление пароля следующие:

- запрос должен быть представлен в виде отсканированного письма с печатью и подписью директора компании, приобретшей датчик;
- в письме обязательно указать серийный номер и дату выпуска датчика;
- к письму в электронном текстовом виде (не скриншотом!) приложить код восстановления пароля;
- в письме указать Ф.И.О. и e-mail контактного лица, которому следует выслать новый пароль.

Чтобы сгенерировать код восстановления пароля, необходимо после появления окна запроса текущего пароля (см. рисунок 46) нажать комбинацию клавиш Ctrl+F10 (см. рисунок 50).

Пароль датчика
Для восстановления пароля скопируйте строку символов и отправьте e-mail на адрес support@technoton.by :
5E73815E21D26BB1
Да Отмена

Рисунок 50 — Получение кода восстановления пароля

3.10.3 Настройки - Калибровка

Для корректной работы датчиков требуется их калибровка, которая проводится с целью определения минимального и максимального уровней измерения топлива в баке.

ВНИМАНИЕ! Все датчики DUT-E калибруются Производителем! Повторная калибровка DUT-E требуется только после обрезки измерительной части либо после присоединения дополнительной секции.

Для калибровки необходимо выполнить следующую последовательность действий:

- 1) Извлечь измерительную часть датчика из топлива.
- **2)** Выдержать паузу (30...60) с для вытекания остатков топлива из трубок измерительной части датчика.
- **3)** Измерить длину трубок измерительной части датчика L (мм) от их конца до дренажного отверстия (см. рисунок 51 а).
- **4)** Ввести полученное значение в поле **Фактическая длина датчика после подрезки** подменю Настройки-Калибровка (см. рисунок 51 б).
- 5) Выдержать паузу (3...5) с для стабилизации показаний датчика.
- **6)** Для калибровки датчика на минимальный уровень топлива нажать кнопку установить .
- 7) Погрузить полностью трубки измерительной части датчика в топливо.
- 8) Выдержать паузу (3...5) с для стабилизации показаний датчика.
- **9)** Для калибровки датчика на максимальный уровень топлива нажать кнопку Установить .
- 10) Калибровка завершена.

Cepssc DUT-E v.3.22				<u>? ×</u>
Проводное соединение	Подключен	COM 13 9600 bit/s A	DDR 101	DUT-E
Версия прошивки	3.5	Перепрошить		
Серийный номер	071001300004			
Загрузить профиль	Сохранить профиль	Печать профиля		** ==
Паспорт Авторизация Настройки Калифовса Режин работы Терикоровския Таблица тарировки Интерфейс Аналоговый выход Диагностика	-	Фактическая длина д после подрезки (ни)	атчеса 235.0	
		Установить пустой	Установить полный	

) определение длины измерительной части

б) подменю Настройки-Калибровка

Рисунок 51 — Калибровка DUT-E

3.10.4 Настройки - Режим работы

В подменю **Режим работы** можно произвести настройку датчика с целью адаптации его работы под конкретные условия эксплуатации и требования подключаемого устройства регистрации и отображения (см. рисунок 52).

роводное соединение	Полклюнен		-	
-		CON 13 9600 DIDS ADDR TOT	<u> </u>	DUT-E
Версия прошивки	3.5	nepenpounts		
Серийный номер	071001300004			
Загрузить профиль	Сохранить профиль	Печать профиля		¥K 💻 💳
Таспорт	_			-
Авторизация				
Калибровка		Время фильтрации уровня		
Режим работы		топлива, с (0120 шаг=10с)	120	
Термокоррекция		Уровень топлива	245.9	
Таблица тарировки		до фильтрации (мм)		
интерфеис Аналоговый выхол		Уровень топлива	31.7	
Диагностика		noche quoto paquin (nin)		
		Интервал автоматической выдачи параметров (с)	1	
		Режим автоматической выдачи параметров	Выкл.	¥
		Превико		
		Постфикс		
		Адрес в сети (101108)	101	

б) DUT-E 232 и DUT-E 485

 выпадающий список выбора режима автоматической выдачи параметров

Рисунок 52 — Настройка режима работы

1) Время фильтрации уровня топлива — временной интервал, предшествующий передаче данных, за который рассчитывается сглаженный уровень топлива в баке. Таким образом, информация об уровне топлива в баке, передаваемая датчиком на устройство регистрации и отображения, является не мгновенным значением, а усредненным за определенный промежуток времени.

Значение настройки может изменяться от 0 до 120 с (с шагом изменения 10 с). По умолчанию установлено значение 60 с.

Настройка данной функции важна при использовании DUT-E на транспорте, эксплуатируемом в условиях пересеченной местности.

2) Интервал автоматической выдачи параметров* — период времени, за который датчик передает данные об уровне топлива в баке на подключенное устройство регистрации и отображения.

3) Режим автоматической выдачи параметров* — определяет режим передачи выходных данных датчика:

- Выкл. автоматическая выдача данных отсутствует, работает передача данных только по запросу терминала;
- НЕХ шестнадцатеричный формат автовыдачи данных (используется по умолчанию);
- ASCII текстовый формат автовыдачи данных;
- ASCII EXT расширенный текстовый формат автовыдачи данных. При его использовании доступны дополнительные параметры — **Префикс** и **Постфикс**, задающие соответственно начало и конец передаваемых текстовых данных.

4) Адрес в сети** — назначает сетевой адрес DUT-E при его работе в сети, состоящей из нескольких датчиков. По умолчанию Производителем устанавливаются следующие адреса датчиков:

- для DUT-E 485 две последние цифры серийного номера датчика;
- для DUT-E CAN и DUT-E AF 101.

3.10.5 Настройки-Термокоррекция

Температурное расширение/сжатие топлива, вызванное изменением его температуры, ведет к изменению объема топлива в баке. Как следствие — датчик передает на устройство регистрации и отображения информацию о значительном снижении или повышении уровня топлива.

Электронная плата DUT-E производит перерасчет уровня топлива — **термокоррекцию**, компенсирующую температурное расширение/сжатие топлива. В результате перерасчета, выходные значения уровня топлива приводятся к рабочей температуре 20 °C и в дальнейшем при температурных колебаниях не изменяются.

По умолчанию, функция автоматической термокоррекции включена со значением коэффициента **0.084 %/°C** (см. рисунок 53). В большинстве случаев не требуется изменять указанное значение коэффициента. Чтобы отключить функцию автоматической термокоррекции, необходимо установить значение коэффициента **0.0**, либо убрать галочку слева от поля ввода коэффициента.

^{*} Настройка только для DUT-E 232 и DUT-E 485.

^{**} Настройка только для DUT-E 485, DUT-E CAN и DUT-E AF.

Проводное соединение	Подключен	COM 13 9600 bit/s ADDR 101	*	DUT-E
Версия прошивки	3.5	Перепрошить		
Серийный номер	071001300004			
Загрузить профиль	охранить профиль	Печать профиля		Ж 💻 🚃
Паспорт				
Авторизация				
Настроики	T	армокоррекция		
Режим работы				
Термокоррекция				
Таблица тарировки		Коэффициент (%/°С)	0.084	
Интерфейс				
Аналоговый выход				
Диагностика				

Рисунок 53 — Настройка функции термокоррекции

3.10.6 Настройки - Выходное сообщение

При настройке DUT-E 232 и DUT-E 485 допускается выбор одного из следующих параметров, передаваемых в выходном сообщении датчика (см. рисунок 54):

- уровень топлива в баке в условных единицах (0...1000);
- высота уровня топлива в баке (мм), дискретность 0,1 мм;
- объём топлива в баке (л), дискретность 0,1 л;
- объём топлива в баке (%), дискретность 0,4 %.

Рисунок 54— Выбор параметра передаваемого выходного сообщения DUT-E

3.10.7 Настройки - Таблица тарировки

Данное подменю позволяет записать во внутреннюю память DUT-E таблицу тарировки топливного бака в который установлен датчик. При составлении таблицы используются данные, которые были получены во время процедуры тарирования топливного бака TC (см. документ «Датчик уровня топлива DUT-E. Инструкция по установке»).

Данные вносятся в виде таблицы соответствия измеренного уровня топлива (поле «Уровень (мм)») объему топлива в баке TC (поле «Объем (л)»). Рекомендуемое количество тарировочных точек — 15. Всего в таблицу можно добавить 30 точек (см. рисунок 55).

Рисунок 55 — Таблица тарировки

Для добавления в таблицу тарировки новой строки следует нажать кнопку <u>Добавить</u> и ввести данные в соответствующие ячейки. После ввода, новая строка автоматически отсортируется и переместится в порядке возрастания значений уровня топлива. Для удаления строки следует ее выделить и нажать кнопку <u>Удалить</u>.

Нажатием кнопки <u>Сохранить в файл</u> тарировочную таблицу можно сохранить в виде файла ***.ttd** на диск ПК. Для загрузки записанного ранее файла тарировочной таблицы, следует нажать кнопку <u>Загрузить из файла</u>.

3.10.8 Настройки - Интерфейс

Из выпадающего списка подменю **Интерфейс** (см. рисунок 56) можно выбрать скорость обмена данными по интерфейсам RS-232 (для DUT-E 232), RS-485 (для DUT-E 485) и K-line (для DUT-E CAN и DUT-E AF) из следующих значений:

- 4800 бит/с;
- 9600 бит/с;
- 19 200 бит/с.

Cepsac DUT-E v.3.22				<u> ? ×</u>
Проводное соединение Версия прошивки	Подключен 3.5	COM 13 9600 bit/s Перепрошить	ADDR 101	DUT-E
Загрузить профиль	Сохранить профиль	Печать профиля		** ==
Паспорт Авгориация Калориация Калофовка Рекинработа Тернохоровкая Таблица тарировки Мандона Анарона Анарона Анарона Анарона Анарона	Cxopor	сть обмена (бит/с)	9600 <u>9</u> 4800 9600 19700	

Рисунок 56 — Настройка интерфейса передачи данных

3.10.9 Настройки – Аналоговый выход

Подменю **Аналоговый выход** * позволяет настраивать выходной сигнал датчика в соответствии с требованиями к параметрам входного сигнала для подключаемого устройства регистрации и отображения (см. рисунок 57).

Троводное соединение Версия прошивки	Подключен 3.5	СОМ 13 9600 bit/s Перепрошить	ADDR 101		DUT	-E
Серийный нокер Загрузить профиль Сохр	071001300004 ранить профиль	Печать профиля]			
Таспорт аторизация аторизация сегройки Герокораноты Термокоренския Таблица тарировки Цигерфейс Аналоговый ваход Цианостика	Мани Макс Тип в	нальный уровень (1. имальный уровень (2. вклодного сигнала:	08.0 B): [09.0 B): [09.0 B): [09.0 B): [000 000 000 000 000 000 000 000 000 00000 0000000	000 000 Юзем ¥		

а) выбор типа выходного сигнала

б) выбор вида выходных данных

Первый выпадающий список **Тип выходного сигнала** позволяет выбрать один из вариантов выходного сигнала датчика согласно 1.4.2:

- U (аналоговое напряжение);
- F (частотный).

Второй выпадающий список позволяет выбрать вид выходных данных датчика:

- Уровень (уровень топлива в баке);
- Объем (объем топлива в баке);
- Сумма (при суммировании показаний нескольких датчиков согласно 2.8.2).

При настройке выходного сигнала аналогового напряжения следует:

1) В поле **Минимальный уровень (1.0...8.0 В)** ввести значение напряжения, соответствующее нижней границе диапазона входного сигнала подключаемого устройства регистрации и отображения.

2) В поле **Максимальный уровень (2.0...9.0 В)** ввести значение напряжения, соответствующее верхней границе диапазона входного сигнала подключаемого устройства регистрации и отображения.

^{*} Настройка только для DUT-E AF.

3.10.10 Диагностика

Подменю **Диагностика** служит для отображения текущих параметров и информации о возможных неисправностях датчика (см. рисунок 58).

Информация, отображаемая в поле «Уровень топлива (мм)» может быть использована в процессе тарировки топливного бака TC.

Анализируя значения параметров (уровень топлива в мм, у.е., л), можно проверить корректность калибровки и настройки датчика.

При возникновении неисправностей в нижней части окна ПО отображается сообщение, содержащее следующую информацию:

- код неисправности;
- расшифровку кода неисправности;
- возможную причину неисправности.

Рисунок 58— Отображение текущих параметров и информации о возможных неисправностях датчика

Протокол DUT-E COM использует коды неисправностей датчиков в соответствии с таблицей 17.

Код неис	правности				
версия прошивки датчика ниже 2.9 и выше		Расшифровка кода неисправности	Возможные решения		
255	128 (-128)*	Ошибка калибровки	Проверить правильность введенного значения фактической длины		
254	129 (-127)*		измерительной части и (или) перекалибровать датчик**		
253	130 (-126)*	Замыкание трубок измерительной части	Промыть трубки измери- тельной части датчика в топливе, осуществить очистку топливного бака от мусора		
252	131 (-125)*	Ошибка калибровки	Проверить правильность введенного значения фактической длины измерительной части и (или) перекалибровать датчик**		
251	132 (-124)*	Аппаратный сбой	Обратитесь к Вашему поставщику датчика		
250 133 (-123)*			Проверить правильность введенного значения фактической длины		
_	134 (-122)*	Ошиока калиоровки	измерительной части и (или) перекалибровать датчик**		
* Другая интерпретация кода неисправности.					

** После перекалибровки следует заново составить и записать во внутреннюю память DUT-Е таблицу тарировки.

3.11 Перепрошивка

Нажатием кнопки Перепрошить, расположенной в Зоне состояния подключения ПО Service DUT-E запускается процедура обновления встроенного программного обеспечения (перепрошивки) DUT-E (см рисунок 59).

Внимание! Необходимо обеспечить стабильное питание датчика в процессе загрузки обновлённого программного обеспечения.
COM13 💌
Указать файл прошивки

Рисунок 59 — Окно начала обновления прошивки

Для выхода из процедуры перепрошивки следует нажать кнопку . Для продолжения следует нажать кнопку Чказать файл прошивки (*.cod) (см рисунок 60).

Имя файла: 162.firmware.302.cod	• прошивка для DUT-E (*.cod) •	
	Открыть Отмена	

Рисунок 60 — Открытие файла прошивки

ВНИМАНИЕ! Убедитесь по прилагаемой аннотации к файлу прошивки, что он соответствует типу перепрограммируемого DUT-E.

В появившемся окне запроса пароля следует ввести пароль датчика (см. рисунок 61).

Рисунок 61 — Окно запроса пароля

Процесс загрузки обновленного программного обеспечения в датчик может длиться несколько минут (см. рисунок 62).

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ! До окончания операции загрузки данных в DUT-E:

- **1)** Отключать DUT-E от адаптера.
- 2) Отключать адаптер от ПК.
- 3) Отключать питание ПК.
- 4) Выполнять на ПК ресурсоёмкие программы.

Рисунок 62 — Загрузка обновленного программного обеспечения в датчик

В случае успешной перепрошивки в Зоне состояния подключения ПО Service DUT-E отобразится новая версия прошивки. Датчик будет снова готов к работе.

При возникновении ошибок, надлежит проверить надежность подключения разъемов кабелей сервисного комплекта к DUT-E, ПК, адаптеру и заново повторить попытку перепрошивки. Если повторная попытка также завершится неудачей, рекомендуем обратиться за консультацией в службу техподдержки Texнотон <u>support@technoton.by</u>.

3.12 Завершение работы с ПО и отключение DUT-E

Для завершения работы с DUT-Е необходимо:

- 1) Сохранить результаты работы (см. 3.9.2).
- 2) Закрыть ПО Service DUT-E, нажатием кнопки 🗵 в верхней части окна программы.
- **3)** Обесточить бортовую сеть TC (если питание датчика от бортовой сети) или выключить источник питания (если питание датчика от источника питания)*.
- **4)** Отключить сервисный кабель DUT-E от разъёма интерфейсного кабеля датчика.

После отключения SK DUT-E может использоваться для подключения следующего датчика (см. 3.5.3).

3.13 Отключение SK DUT-E

После окончания работы для отключения SK DUT-E от ПК необходимо выполнить следующую последовательность действий:

- **1)** Отключить USB А-В кабель от порта USB ПК.
- **2)** Отключить USB А-В кабель от порта USB В адаптера.
- **3)** Отключить сервисный кабель DUT-E от разъёма RS-232/ISO 14230/RS-485 адаптера.

* Данный пункт актуален только для DUT-E CAN и DUT-E AF.

3.14 Удаление ПО Service DUT-E

Для удаления ПО Service DUT-E с ПК, необходимо выполнить следующие действия:

- **1)** В Windows выбрать папку меню «Пуск» \rightarrow Все программы \rightarrow Service DUT-E 3.22.
- 2) Из выбранной папки запустить ярлык 💅 Uninstall.
- 3) В ходе процесса деинсталляции ПО Service DUT-E, следовать всем указаниям программы.

По завершении процесса деинсталляции, файлы ПО Service DUT-E будут удалены с ПК.

4 Проверка точности измерений

4.1 Основные положения

Проверка точности измерений проводится с целью определения приведенной и абсолютной погрешности измерений DUT-E на данном TC.

Для проверки точности измерений DUT-Е необходимо провести контрольные испытания, заключающиеся в наполнении/опорожнении топливного бака и сопоставлении полученных с помощью DUT-Е результатов измерений с фактическим объемом слитого/залитого топлива.

Слив топлива осуществляется при помощи ручной или механической помпы.

При проведении испытаний необходимо использовать поверенные мерные емкости (мерники) для определения объема слитого/залитого топлива.

ВНИМАНИЕ! При проведении контрольных испытаний объем слитого/залитого топлива должен быть не менее 20 % объема бака.

4.2 Порядок проведения контрольных испытаний

Контрольные испытания следует проводить в следующем порядке:

- 1) Включить зажигание.
- 2) Произвести слив топлива установленного объема.
- 3) С помощью поверенного мерника определить объем проведенного слива.
- 4) Записать данные в протокол контрольных испытаний.
- **5)** Выдержать паузу для стабилизации топлива в баке (до стабилизации показаний DUT-E).
- 6) Произвести заправку топлива в объеме слитого ранее.
- 7) Записать объем произведенной заправки в протокол.
- 8) При анализе погрешностей параметры «Слив» и «Заправка» оцениваются в процентах относительно объема бака.

Образец бланка протокола контрольных испытаний и формулы для расчета погрешностей приведены в приложении А.

5 Аксессуары

Для установки, подключения и эксплуатации датчиков DUT-E Технотон предлагает приобрести **качественные аксессуары.**

5.1 Монтажный комплект МК DUT-E

Для установки DUT-E в бак TC или стационарную емкость используется входящий в комплект поставки датчика монтажный комплект DUT-E (далее — MK DUT-E). При необходимости MK DUT-E можно приобрести отдельно. С помощью MK DUT-E можно быстро и качественно смонтировать датчик.

Состав МК DUT-E представлен на рисунке 63. Эластичная резиновая прокладка под крепежную пластину обеспечивает герметичность в диапазоне рабочих температур датчика. Отверстия в крепежной пластиковой пластине позволяют устанавливать датчик вместо штатного на автомобили производства стран СНГ без дополнительного сверления бака. Возможна поставка крепежной пластины с отверстиями по стандарту SAE 5 bolt, принятому ведущими мировыми автопроизводителями.

В зависимости от толщины и материала бака можно использовать либо обычные винты, либо винты-саморезы. Донный упор обеспечивает дополнительную жесткость крепления DUT-E в баке. Пломбирование предотвращает несанкционированное вмешательство в работу датчика. Фильтр-сетка надежно защищает электроды измерительной части датчика от воды и грязи.

^{* 1} шт. – используется при установке DUT-Е и 1 шт. – запасной элемент.

5.2 Устройство сопряжения УС-1

При установке DUT-E на место штатного датчика уровня топлива может понадобиться управление стрелочным указателем остатка топлива в баке. Для реализации данной функции применяется устройство сопряжения УС-1 (см. рисунок 64), разработанное СП Технотон.

ВНИМАНИЕ! Устройство сопряжения может работать только с DUT-E A5 либо с DUT-E AF (в диапазоне напряжения выходного сигнала датчика от 1,5 до 4,5 В).

Обозначение для заказа	Примечание
УС-1-90	Эмуляция датчика уровня с низким сопротивлением: от 0 до 90 Ом. При возрастании уровня топлива сопротивление увеличивается
УС-1-800	Эмуляция датчика уровня с высоким сопротивлением: от 800 до 185 Ом. При возрастании уровня топлива сопротивление уменьшается

Таблица 18 — Модели устройств сопряжения

Рисунок 64 — Внешний вид устройства сопряжения УС-1

Электрическое подключение УС-1 осуществляется в соответствии с назначением проводов согласно таблице 19.

Таблица 19 —	• Назначение	проводов УС-1
--------------	--------------	---------------

Номер провода	Маркировка проводов	Цвет провода*		Примечание	
1	T034	Белый		Сигнал с датчика уров- ня топлива (вход)	
2	GND	Коричневый		Macca «-»	
3	T734	Розовый		Указатель уровня топлива (выход)	
4	T733	Розовый		Контрольная лампа уровня топлива (выход)	
5	VBAT	Оранжевый		Питание «+»	
* Производитель оставляет за собой право изменять цвета проводов.					

5.3 Фильтр-сетка

Фильтр-сетка (см. рисунок 65 а) предназначен для защиты электродов измерительной части DUT-E от воды и грязи, что позволяет значительно увеличить срок безотказной работы датчика.

Фильтр-сетка монтируется на измерительную часть DUT-E с установленным донным упором в последовательности согласно рисунку 65 б) и крепится защелками фиксатора.

Рисунок 65 — Фильтр-сетка

5.4 Соединительные кабели

Для электрического подключения DUT-E используются соединительные кабели согласно таблице 20.

Таблица 20 —	Соединительные	кабели DUT-E
--------------	----------------	--------------

Внешний вид	Обозначение (наименование)	Назначение и описание
	Кабель 076-01 (кабель датчиков)	Предназначен для подключения датчиков к устройствам регистра- ции и отображения, и внешнему питанию. Длина 7,5 м.
	Кабель 084 (удлинитель кабеля 076-01)	Предназначен для увеличения длины кабеля 076-01. Длина 3 м.
Внешний вид	Обозначение (наименование)	Назначение и описание
-------------	--	---
	Cable DUT-E-232/485 (жгут датчиков уровня топлива)	Предназначен для подключения датчиков к устройствам регистра- ции и отображения, и внешнему питанию. Длина 7 м.
	RS 2AMP-300 (удлинитель кабеля 232/485)	Предназначен для увеличения длины жгута Cable DUT-E-232/485. Длина 3 м.
	RS 2AMP-1000 (удлинитель кабеля 232/485)	Предназначен для увеличения длины жгута Cable DUT-E-232/485. Длина 10 м.
	S6 SC-CW-700 (кабель)	Предназначен для подключения датчиков DUT-E CAN к устройствам регистрации и отображения, и внешнему питанию. Длина 7 м.

Продолжение таблицы 20 — Соединительные кабели DUT-E

5.5 Дополнительные аксессуары

При установке DUT-E на TC могут потребоваться дополнительные элементы (см. таблицу 21).

Таблица 21 — Дополнительные аксессуары DUT-E

Внешний вид	Обозначение	Наименование	Назначение				
	Catch DUT-E	Донный упор	Для усиления жесткость крепления DUT-E				
	FTP DUT-E	ГР DUT-E Заглушка бака					
	Заглушка	Заглушка Заглушка отверстия топливного бака					
S	Пломба Пломба «Кристалл» Пломба пластмассовая						
	Канат «Универсал» (бухта 50 м)	Канат пломбировочный	разъема подклю- чения DUT-E				
	CoTube9.8 (бухта 50 м, Ø 9,8 мм)	Трубка гофрированная разрезная	Для дополнитель- ной защиты сигнального кабеля				
	Коннектор 5200 (3х0,8 мм², упаковка 85 шт.) Коннектор						

6 Диагностирование и устранение неисправностей

При возникновении неисправностей в работе DUT-E в первую очередь необходимо обращать внимание на состояние электропроводки TC, чистоту и состояние контактов разъема питания датчика.

ВНИМАНИЕ!

1) Значительное окисление контактов выключателя «массы» или его неисправность могут привести к искажению выходного сигнала DUT-E.

2) Показания DUT-E будут некорректными при замыкании трубок DUT-E токопроводящей грязью или водой.

6.1 Диагностирование и устранение неисправностей DUT-E с аналоговым выходным сигналом

Работоспособность DUT-E с аналоговым выходным сигналом можно проверить при помощи мультиметра, путем измерения их выходного напряжения (для DUT-E AF, DUT-E A5 и DUT-E A10) или тока (для DUT-E I) и сравнения результатов измерений с данными таблицы 22.

Таблица 22 — Неисправности DUT-E с аналоговым выходным сигналом

Значения выходного сигнала	Причина неисправности	Действия
Напряжение: от 1 до 9 В (для DUT-E AF) от 0,4 до 5,0 В (для DUT-E A5); от 0,4 до 10,0 В (для DUT-E A10)	Неисправностей нет, нормальная работа	Проверьте работу устройства регистрации и отображения
Ток:		
от 2 до 22 мА (для DUT-E I)		
Напряжение: от 9,5 до 10 В (для DUT-E AF) более 5 В (для DUT-E A5); более 10 В (для DUT-E A10) Ток: более 22 мА (для DUT-E I)	Короткое замыкание трубок измерительной части из-за наличия между ними металличе- ских заусенец, стружек; грязь или вода на дне бака	Устранить замыкание, промыть трубки датчика, промыть топливный бак TC
Напряжение: от 0,5 В и ниже (для DUT-E AF)	Датчик не откалиброван*	Откалибровать датчик*
менее 0,4 В (для DUT-E А5 и DUT-E A10) Ток: менее 2 мА (для DUT-E I)	Неисправна электронная плата датчика	Обратитесь в ближайший региональный сервисный центр
* Только для DUT-E AF		

Также работоспособность DUT-E AF можно проверить с помощью сервисного комплекта SK DUT-E по аналогии DUT-E с цифровым выходным сигналом (см. 6.3).

6.2 Диагностирование и устранение неисправностей DUT-E с частотным выходным сигналом

Работоспособность датчиков с частотным выходным сигналом можно проверить при помощи частотомера, путем измерения выходной частоты датчика DUT-E AF и сравнения результатов измерений с данными таблицы 23.

Частота на выходе, Гц	Причина неисправности	Действия
От 500 до 1500	Неисправностей нет, нормальная работа	Проверьте работу устройст- ва регистрации и отобра- жения
1600	Короткое замыкание трубок измерительной части из-за наличия между ними метал- лических заусенец, стру- жек; грязь или вода на дне бака	Устранить замыкание, про- мыть трубки DUT-E, промыть топливный бак TC
	Датчик не откалиброван	Откалибровать датчик
400	Неисправна электронная плата датчика	Обратитесь в ближайший региональный сервисный центр

Таблица 23 — Неис	правности DUT-E с	с частотным	выходным	сигналом
-------------------	-------------------	-------------	----------	----------

Также работоспособность DUT-E AF можно проверить с помощью сервисного комплекта SK DUT-E по аналогии DUT-E с цифровым выходным сигналом (см. 6.3).

6.3 Диагностирование и устранение неисправностей DUT-E с цифровым выходным сигналом

Работоспособность DUT-E с цифровым выходным сигналом проверяется путем их подключения к персональному компьютеру с помощью сервисного комплекта SK DUT-E (см. 3.10.10).

7 Техническое обслуживание

7.1 Общие указания

Внешний осмотр и проверку работоспособности DUT-E рекомендуется проводить не реже одного раза в год.

ВНИМАНИЕ! При повторном монтаже DUT-E замените уплотнительное кольцо крепежной пластины.

Ремонт DUT-E осуществляется только сертифицированными Региональными Сервисными Центрами (далее — РСЦ). Полный перечень РСЦ можно найти на сайте <u>http://www.technoton.by/</u>.

7.2 Демонтаж

Перед демонтажем DUT-E необходимо очистить поверхность бака в непосредственной близости от места установки DUT-E.

Подготовить чистую ветошь для удаления остатков топлива с датчика.

Срезать пломбировочный трос, не повредив при этом сигнальный провод.

Отсоединить разъем интерфейсного кабеля DUT-E.

Открепить DUT-Е путем поворота корпуса против часовой стрелки.

Установить заглушку (приобретается отдельно) для защиты от попадания мусора в бак через монтажное отверстие DUT-E.

ВНИМАНИЕ! При демонтаже DUT-E не тяните за интерфейсный кабель. В противном случае возможны повреждения кабеля и/или электронной платы.

7.3 Осмотр

После демонтажа DUT-E необходимо провести осмотр на предмет выявления следующих возможных дефектов:

- видимых повреждений корпуса измерительной головки, электродов измерительной части, интерфейсного кабеля, разъема электрического подключения датчика;
- люфта трубок измерительной части относительно друг друга и/или корпуса;
- наличия грязевого налета либо парафина между трубками измерительной части;
- повреждений крепежной пластиковой пластины и следов протечки топлива через резиновую прокладку крепежной пластины.

При обнаружении дефектов следует обратиться в РСЦ (см. 7.1) или к Производителю.

7.4 Очистка

В процессе эксплуатации на стенках трубок измерительной части DUT-E возможно образование грязевого налета либо парафина. Загрязнение полости между трубками измерительной части DUT-E может привести к значительному увеличению погрешности измерения.

ВНИМАНИЕ! Наличие грязевого налета внутри центральной трубки измерительной части не влияет на работоспособность и погрешность DUT-E. Контролируйте чистоту полости между двумя трубками измерительной части.

Очистку трубок измерительной части DUT-E следует проводить путем ее промывки в топливе.

Для обеспечения работоспособности датчика рекомендуется также промывать фильтрсетку.

ВНИМАНИЕ! При промывке трубок измерительной части и фильтра-сетки не допускайте попадания топлива на корпус DUT-E, сигнальный провод и/или его разъем.

8 Упаковка

Комплекты DUT-E и SK DUT-E поставляются в картонных коробках вид которых представлен на рисунке 66.

Рисунок 66 — Упаковка

На упаковку DUT-E с двух сторон наклеивается этикетка, содержащая информацию о наименовании продукта, длине измерительной части, серийном номере, версии аппаратной части, дате выпуска из производства, массе, а также штамп приёмки службой ОТК Производителя (см. рисунок 67 а).

На упаковку SK DUT-E с двух сторон наклеивается этикетка, содержащая информацию о наименовании продукта, версии ПО Service DUT-E, серийном номере, дате выпуска из производства, массе, а также штамп приёмки службой ОТК Производителя (см. рисунок 67 б).

Рисунок 67 — Этикетка на упаковке

Примечание — Внешний вид этикеток и состав информации на них может быть изменён Производителем.

9 Хранение

DUT-Е рекомендуется хранить в закрытых сухих помещениях.

Хранение DUT-E допускается только в заводской упаковке при температуре от минус 50 до плюс 40 °C и относительной влажности до 100 % при плюс 25 °C.

Не допускается хранение DUT-E в одном помещении с веществами, вызывающими коррозию металла и/или содержащими агрессивные примеси.

Срок хранения DUT-Е не должен превышать 24 мес.

10 Транспортирование

Транспортирование DUT-E рекомендуется проводить в закрытом транспорте, обеспечивающем защиту DUT-E от механических повреждений и исключающем попадание атмосферных осадков.

При транспортировании на самолетах DUT-Е необходимо помещать в отапливаемые герметизированные отсеки.

Воздушная среда в транспортных средствах не должна содержать кислотных, щелочных и других агрессивных примесей.

Транспортная тара с упакованным DUT-Е должна быть опломбирована (опечатана).

11 Утилизация

DUT-E не содержит вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды в процессе и после окончания срока службы и при утилизации.

DUT-Е не содержит драгоценных металлов в количестве, подлежащем учету.

Контактная информация

Дистрибуция, техническая поддержка, сервис

Технотон

Тел/факс: +375 17 223-78-20

marketing@technoton.by

support@technoton.by

Производитель

Завод Флометр

Тел/факс: +375 1771 3-99-89

office@flowmeter.by

Приложение А

Образец протокола контрольных испытаний

Протокол

от «____» _____ 20___ г.

Модель и серийный номер DUT-E	
Марка, модель, гос. номер ТС	
Модель, зав. номер устройства регистрации и визуализации	

Объем слива	По показаниям мерника $V_{\scriptscriptstyle M}$, л	
из бака	По показаниям терминала $V_{{\scriptscriptstyle {\it терм}}}$, л	
Погрешность	Абсолютная $\Delta = V_{repm} - V_M$, л	
измерения слива	Приведенная к объему бака TC $\delta = \frac{V_{\text{терм}} - V_M}{V_{\text{объем}_{-} \text{ бака}}} \cdot 100\% , \%$	

Объем заправки	По показаниям мерника $V_{_M}$, л	
в бак	По показаниям терминала $V_{{\scriptscriptstyle {\it терм}}}$, л	
	Абсолютная $\Delta = V_{repm} - V_M$, л	
погрешность измерения заправки	Приведенная к объему бака TC $\delta = \frac{V_{\text{терм}} - V_M}{V_{oбъем_{-} \ бакa}} \cdot 100\%$, %	

Выводы:

Результат измерения заправки соответствует (не соответствует) техническим требованиям.

Результат измерения слива соответствует (не соответствует) техническим требованиям.

Замечания:		
Представитель Заказчика	/	_/
Представитель Подрядчика	/	_

Приложение Б

Варианты подключения DUT-E CAN

Рисунок Б.1 — Подключение одного DUT-E CAN к устройству регистрации и отображения, не совместимому с кабельной системой S6

Рисунок Б.2— Подключение нескольких DUT-E CAN к устройству регистрации и отображения, не совместимому с кабельной системой S6

Рисунок Б.3 — Подключение одного DUT-E CAN к устройству регистрации и отображения, совместимому с кабельной системой S6

Рисунок Б.4— Подключение нескольких DUT-E CAN к устройству регистрации и отображения, совместимому с кабельной системой S6

Приложение В Сообщения протокола передачи данных DUT-E CAN

Параметры, структура и содержание сообщений протокола передачи данных DUT-E CAN приведены в таблицах B.1, B.2.

Таблица В.1 — Описание сообщения протокола передачи данных DUT-E CAN

	Коды параметров согласно SAE J1939/71 (SPN)	521120	521121	521123	521124	521125	521188	987	624	623	1213	3041	3040	3039	3038	4101	+T7T		C 171	1706			1216			
Содержание сообщения	Полезная информация, содержащаяся в сообщении	Серийный номер DUT-E CAN	Версия прошивки DUT-E CAN	Версия аппаратной части DUT-E CAN	Версия настроек DUT-E CAN	Дата производства DUT-E CAN	Сетевой agpec DUT-E CAN на шине CAN				Boross	reache				SPN, 16 наиболее значимых бит	SPN, 3 младших бита	Коды неисправностей FMI	(см. таблицу 3)	Резерв. Значение всегда равно 0	Счетчик.	Если счетчик используется,	значение равно 127.	Если счетчик не используется,	значение изменяется от 0 до 126	
	Длина	16 байт	8 байт	8 байт	8 байта	4 байта	1 байт	7-8 биты	5-6 биты	3-4 биты	1-2 биты	7-8 биты	5-6 биты	3-4 биты	1-2 биты		6-8 биты		I-10 ONTE	8 бит			1-7 биты			
	Начальная позиция	1	17	25	33	41	44							,	D											
	Номер группы нометров нометров грем)	62995	(0xF613)					65226	(0XFECA)								-									
ĺ	оп тэтиqоиqП онивиломү (q)	9						ه																		
ения	роυ γточненный PDU	19						202																		
coobщ	тамормат (PF)	246						254																		
етры	Страница Данных (DP)	•						•																		
Парам	геннэринов слинедто (903) хыннад	•						•																		ьзуются.
	енилД хідннбд	45						Пере	менн	ВB																не испол
	∩бадэтнN м⊬бдэдэп	2	запросу					1 c																		я эти поля н
	Наименование сообщения	PGN 62995		«Hachopt DUI-E CAN»				PGN 65226		«AKTИBHЫE	(DTC's) DUT-F CAN»															- в настоящее врем
	Ŷ	4						S																		

Таблица В.2 — Описание сообщения протокола передачи данных DUT-E CAN

Протокол передачи данных DUT-E CAN используют коды неисправностей FMI в соответствии с таблицей В.3.

Коды неисправностей FMI	Расшифровка кода неисправности	Возможные решения
13	Датчик не откалиброван (разница между калибровочными частотами измерительного гене- ратора при минимальном и мак- симальном уровнях топлива ме- нее 100 Гц) Датчик не откалиброван на мак- симальный уровень топлива	Проверить правильность введен- ного значения фактической длины измеритель- ной части и (или) перекалибровать датчик*
4	В датчике не работает измери- тельный генератор. Возможно замыкание трубок из- мерительной части	Промыть трубки измерительной части датчика в топливе, осуществить очистку то- пливного бака от мусора
12	Калибровочные значения для минимального и максимального уровней топлива в датчике отли- чаются менее чем на 5 Гц	Проверить правильность введен- ного значения фактической длины измеритель- ной части и (или) перекалибровать датчик*
0	Текущая частота измерительного генератора больше зафиксиро- ванной при калибровке на мини- мум (разница более чем на 100 Гц)	Проверить правильность введен- ного значения фактической длины измеритель- ной части и (или) перекалибровать датчик*
* После перекалиб DUT-E CAN таблицу	ровки следует заново составить и з у тарировки.	аписать во внутреннюю память

Таблица В.3 — Коды неисправностей (FMI) датчика DUT-E CAN

Версия 5.2

Приложение Г

Схема подключения нескольких DUT-E CAN для суммирования показаний

Рисунок Г.1 — Схема подключения нескольких DUT-E CAN для суммирования показаний

Приложение Д

Пример распечатки профиля DUT-E

Датчик уровня топлива.

аспорт								
Модель датчика	DUT-E AF							
Серийный номер	071001300004							
Версия прошивки	3.5							
Дата компиляции	Feb 19 2014							
Время компиляции	13:02:29							

Настройки

Фактическая длина датчика после подрезки (мм)			235.0	
рмокоррек	ция			
Коэффициент (%/°C)			0.084	
жим работь	51			
Время фильтрации уровня топлива, с (0120 шаг=10с) Адрес в сети (101108)			120	
			101	
алоговый в	ыход			
Минимальный уровень (1.08.0 В): Максимальный уровень (2.09.0 В): Тип выходного сигнала:			1.000	
			9.000	
			U	
Тип выходно	го сигнала:		Объем	
блица тари	ровки			
Nº	Уровень, мм	06	Объём, л	
001	0.0		0.0	
002	16.1		5.0	
003	32.0		10.0	
004	46.3		15.0	
005	60.4		20.0	
006	74.9		25.0	
007	89.3		30.0	
008	103.9		35.0	
009	118.3		40.0	
010	133.7		45.0	
011	147.3		50.0	
012	162.3		55.0	
013	178.2		60.0	
014	194.7		65.0	
045	212.9		70.0	
015			75.0	
015	231.6		75.0	

Рисунок Д.1 — Пример распечатки профиля датчика DUT-E AF

1812.82

Частота калибровки "полный", гц

Приложение Е

Предметный указатель

A

Аксессуары датчиков, 70

Г

Габаритные размеры, 19

Д

Диагностика и устранение неисправностей DUT-E с аналоговым выходным сигналом, <u>75</u> с частотным выходным сигналом, <u>76</u> с цифровым выходным сигналом, <u>76</u> Дополнительные аксессуары датчиков, <u>74</u>

И

Интервал автоматической выдачи параметров, <u>60</u>

К

Калибровка, <u>58</u> Коды неисправностей, <u>64</u> Контрольные испытания точности измерений, <u>69</u> Крепление DUT-E в баке, <u>26</u>

Μ

Монтажный комплект MK DUT-E, 70

Н

Наращивание длины, <u>25</u> Настройка выходного сигнала DUT-E AF, <u>63</u> Настройка выходного сообщения DUT-E 232 и DUT-E 485, <u>61</u>

0

Область применения, <u>7</u> Обозначение для заказа, <u>6</u> Обрезка измерительной части, <u>24</u> Отличительные особенности DUT-E, <u>5</u>

П

Перепрошивка, <u>66</u> Печать профиля датчика, <u>55</u>, <u>89</u> Пломбирование, <u>37</u> Протокол передачи данных DUT-E CAN, <u>15</u>, <u>87</u> Протокол передачи данных DUT-E 232 и DUT-E 485, <u>14</u> Протокол контрольных испытаний датчика, <u>82</u> Профиль датчика, <u>54</u>

Ρ

Режим автоматической выдачи параметров, 60

С

Сервисный комплект назначение, 38 состав, <u>39</u> подключение, 48 Сервисное программное обеспечение назначение, 38 установка, 45 работа, <u>54</u> Сетевой адрес, 60 Скорость обмена данными, 62 Совместимость с терминалами мониторинга, 16 Соединительные кабели, 72 Суммирование показаний DUT-E AF, <u>34</u> DUT-E CAN, 36 DUT-E 232, 31 Схемы подключения DUT-E CAN, 83

Т

Тарировка <u>11</u>, <u>61</u> Технические характеристики основные, <u>12</u> выходного сигнала DUT-E AF, <u>13</u> выходного сигнала DUT-E A5, DUT-E A10, DUT-E I, <u>13</u> выходного сигнала DUT-E 232, DUT-E 485, <u>14</u> выходного сигнала DUT-E CAN, <u>15</u> Техническое обслуживание, <u>77</u>

У

Упаковка, <u>79</u> Установка в специальное отверстие, <u>21</u> на место штатного топливного датчика, <u>20</u>

Φ

Фильтрация показаний, <u>60</u> Фильтр-сетка, <u>72</u>

Э

Электрическое подключение DUT-E AF, <u>28</u> DUT-E A5, DUT-E A10, DUT-E I, <u>28</u> DUT-E 232, DUT-E 485, <u>29</u> DUT-E CAN, <u>30</u> DUT-E SUM 232, <u>32</u> DUT-E SUM AF, <u>34</u> нескольких DUT-E CAN для суммирования, <u>88</u> общие указания, <u>27</u>

Версия 5.2

Приложение Ж

Видеография

Ссылка для просмотра:

1) Видеоролик «Установка датчика уровня топлива DUT-E (на примере DUT-E 485)».

Ссылка для просмотра: <u>https://www.youtube.com/watch?v=4j9NtcbDVqc</u>

2) Видеоролик «Наращивание длины измерительной части DUT-E с помощью измерительных секций KDC».

Ссылка для просмотра: <u>https://www.youtube.com/watch?v=dWuY_JJfhFw</u>

3) Видеоролик «Фильтр-сетка датчика уровня топлива DUT-E».

Ссылка для просмотра: You Tube <u>https://www.youtube.com/watch?v=IMULx6GMB2Y</u>

4) Анимационный ролик «Датчик уровня топлива DUT-E»

http://www.technoton.by/dut

5) Другие видеоматериалы Технотон представлены на регулярно обновляющейся странице канала YouTube по ссылке:

You Tube https://www.youtube.com/channel/UCmtxMTzJNAQHGMjUJS04HDQ